АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Функциональная структура автономной нервной системы

Прочитайте:
  1. APUD – СИСТЕМА (СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ, БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ В НОРМЕ И ПАТОЛОГИИ)
  2. I. Мероприятия, направленные на создание системы эпидемиологического надзора
  3. I. Неврогенные опухоли из собственно нервной ткани.
  4. I. Противоположные философские системы
  5. II Структура и функции почек.
  6. II. Клетки иммунной системы
  7. II. Системы вторичных мессенджеров при опиатной наркомании. Нейрохимические проблемы толерантности и абстинентного синдрома
  8. IV. Анатомия органов сердечно-сосудистой системы
  9. IV. Реакция эндокринной системы на гипогликемию
  10. N 188. Ганглии симпатической нервной

 

На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпати­ческую и метасимпатическую части. Из них первые две имеют центральные структуры и периферический нервный аппарат, метасимпатическая же часть целиком лежит на периферии в стенках внутренних органов.

 

Дуга автономного рефлекса (рис. 4.22), как и соматическая рефлекторная дуга, состоит из трех звеньев: чувствительного (аф­ферентного, сенсорного), ассоциативного (вставочного) и эффекторного. В зависимости от уровня замыкания, т. е. расположения ас­социативного звена, различают местные, или ганглионарные, спинальные, бульварные и т. д. рефлекторные дуги. Рефлексы, возникающие при раздражении чувствительных волокон, идущих в составе симпатических и парасимпатических нервов, вовлекают в деятельность не только автономную, но и соматическую нервную систему. Чувствительные волокна этой единой (автономной и со­матической) афферентной системы являются отростками биполярных клеток, лежащих в спинномозговых узлах или их аналогах, таких как яремный, тройничный (гассеров) узлы и др. Такое понимание справедливо для сегментарных и рефлекторных дуг более высокого порядка и не относится к местным периферическим дугам автоном­ного рефлекса.

 

Наряду с общим для обеих (автономной и соматической) систем звеном существует и собственный афферентный путь автономной нервной системы, называемый особым, или висцеральным. Он со­здает основу для путей местных рефлексов, осуществляемых неза­висимо, без участия ЦНС. По локализации клеточных тел чувст­вительных нейронов, по ходу и длине отростков их разделяют на три группы. В первую группу объединены клетки, тела которых локализуются в узлах солнечного и нижнего брыжеечного сплетений. Один из их длинных отростков направляется на периферию, другой в сторону спинного мозга. Клетки второй группы характеризуются тем, что их длинный отросток идет к рабочему органу, короткие распределяются в самом ганглии и синаптически контактируют с вставочным или эффекторным нейронами. Висцеральные чувстви­тельные клетки третьей группы отличаются тем, что их тела и короткие отростки располагаются в интрамуральных узлах, длинные же отростки в составе соответствующих нервов достигают симпати­ческих узлов, где и происходит переключение на ассоциативный и моторный (эфферентный) нейрон.

 

Висцеральная чувствительность обусловлена активностью пяти отдельных типов интероцепторов: механо-, хемо-, термо-, осмо- и ноцицепторов, называемых специфическими. Из них наиболее рас­пространенными являются механорецепторы.

 

Среди механорецепторов внутренних органов известны ре­цепторы двух типов: быстро- и медленноадаптирующиеся. Быстроадаптирующиеся механорецепторы характеризуются высоким по­рогом возбуждения и встречаются в основном в слизистой оболочке и серозном слое висцеральных органов и связаны преимущественно с миелиновыми волокнами. Характерной чертой быстроадаптирующихся рецепторов являются исключительная чувствительность к динамической фазе движения и сокращения. Для медленноадаптирующихся механорецепторов, наоборот, характерна генерация сиг­налов в течение длительного периода раздражения или после его окончания. Эти рецепторы имеются во всех внутренних органах и характеризуются низким порогом возбуждения. Такая особенность позволяет им быть спонтанно-активными и направлять в нервные центры разнообразную информацию о сокращении, расслаблении, растяжении, смещении висцеральных органов. Медленноадаптиру­ющиеся рецепторы связаны с тонкими миелинизированными и безмиелиновыми нервными волокнами.

 

Хеморецепторы активируются при изменении химического состава ткани, например напряжения СО2 и О2 в крови. В органах пищеварения выделены специальные кислото- и щелочечувствительные рецепторы, чувствительные к действию только аминокислот или аминокислот и глюкозы.

 

Тепловые и холодовые терморецепторы также обнаружены по преимуществу в пищеварительном тракте. Осморецепторы, ионорецепторы (например, натриевые) висцеральных органов обнаружены в печени. Частота их разрядов находится в прямой зависимости от осмотического давления жидкости. Существование специфических ноцицепторов пока еще окончательно не уста­новлено, хотя их роль и отводится некоторым свободным нервным окончаниям. Болевые ощущения возникают при чрезмерной стиму­ляции любого типа — растяжении, сокращении, действии химиче­ских стимулов.

 

Помимо специфических, имеются и рецепторы, воспринимающие раздражение любой модальности, будь то механическое, химическое, термическое, осмотическое. Местом локализации таких полимодаль­ных интероцепторов является, например, слизистая оболочка пи­щеварительного тракта.

 

Все рассмотренные виды висцеральной чувствительности пере­даются в центры по волокнам трех основных нервных путей: блуж­дающего, чревных (большого, малого, поясничных) и тазового (рис. 4.23). Из них самым мощным коллектором висцеральной чув­ствительности является блуждающий нерв. Соотношение в нем аф­ферентных и эфферентных волокон составляет 9:1, в то время как в чревном и тазовом нервах 3:1 и 1:1 соответственно.

 

Помимо местных сетей, афферентные сигналы могут запускать центральные нейронные механизмы ряда систем: сегментарную, межсегментарную, проприоспинальную, надсегментарную. Несмотря на такую сложность многоступенчатой организации, основа меха­низма взаимодействия на всех ступенях остается одной и той же: это синаптическая конвергенция к центральным клеткам сигналов различной природы (висцеральной и соматической) и разной мо­дальности, оценка их аппаратом суммации постсинаптических по­тенциалов и на основании оценки результатов — генерация нового сигнала. Различия между механизмами, включающимися на разных уровнях, непринципиальны и заключаются в количественных осо­бенностях конвергенции. Эти механизмы вовлекаются в разной сте­пени в зависимости от интенсивности воздействия и включаются в разных соотношениях.

 

Для запуска менее сложных сегментарных механизмов оказывает­ся достаточной и менее сложная суммация постсинаптических процес­сов. Эти механизмы срабатывают при возбуждении небольшого числа афферентов. Включение более сложных систем требует значительной суммации процессов, а стало быть, более интенсивного притока афферентации. Следовательно, для запуска различных нейронных систем основой является мощность поступающего афферентного потока.

 

Импульсы, интегрированные в общей системе вставочных ней­ронов, способны вызвать их активность и, как следствие, появление вегетативных, например дыхательных или сердечно-сосудистых, эф­фектов. Импульсы могут также активировать клетки высших отделов центральной нервной системы, вызывая появление поведенческих реакций и субъективных ощущений.

 

Реакция на афферентный импульс и элементы его переработки на подкорковом уровне является основой для последующих процессов в коре больших полушарий, направленных на регуляцию функций определенной висцеральной системы — пищеварительной, дыхатель­ной и т. д. Эти процессы выражаются в виде вызванных потенци­алов — первичного и вторичного ответов: первичные сравниваются с пусковыми, вторичные — с корригирующими влияниями коры большого мозга.

 

При анализе локализации представительства висцеральных сис­тем в коре большого мозга обнаруживается несоответствие числа зон проекций блуждающего и чревного нервов. Объясняется это тем, что блуждающий нерв по числу сенсорных волокон и особенно по величине иннервируемых областей не имеет себе равных, охва­тывая большое количество внутренних органов, некоторые из ко­торых подвержены в какой-то мере произвольному контролю.

 

Представительства функционально близких висцеральных систем находятся и в близко расположенных областях коры. Например, зоны брыжеечных, селезеночных и чревных нервов перекрываются представительством блуждающего нерва, что служит основой для тонкой координации процессов, осуществляемых корой больших полушарий, восстановления функции, надежности работы висце­ральных органов.

 

Предложенная В. Н. Черниговским схема проведения висцераль­ных сигналов в центральной нервной системе дает представление об участии той или иной наиболее важной структуры в этом процессе, хотя и не указывает на степень участия каждой и не отражает всей сложности существующих взаимодействий (схема 4.2). Сигналы, вызывающие ответы в клетках коры большого мозга, после соот­ветствующей обработки передаются в специальные выходы передних отделов поясной извилины, и уже оттуда через гипоталамус нисхо­дящие пути следуют к вставочным (преганглионарным), затем к эффекторным нейронам и далее к исполнительным органам. Таким образом, информация от высших центров по нисходящим путям и от периферических висцеральных и соматических клеток по спинальным дугам поступает к преганглионарным нейронам.

 

Тело преганглионарного автономного нейрона располагается в сером веществе в одних случаях ствола мозга, в других — спинного мозга. На периферии за пределами спинного мозга нервное волокно вступает в синаптический контакт с эффекторным нейроном. Иск­лючение составляет лишь часть волокон, следующих в составе чрев­ного нерва к надпочечнику. Эти волокна проникают непосредственно в мозговой слой железы, который и выполняет своеобразную фун­кцию постганглионарного звена рефлекторной дуги. Истинное же эффекторное звено дуги автономного рефлекса представляет собой нервную клетку, мигрировавшую из ЦНС.

 

Преганглионарные волокна различаются по своим функциональ­ным свойствам. Наибольшее их число составляют тонкие, легко возбудимые, с медленным проведением возбуждения единицы. При­ближаясь к эффекторным нейронам, преганглионарные волокна теряют миелин и разветвляются на тонкие терминалы, образуя на теле и отростках эффекторного нейрона синаптические контакты.

 

Эффекторных нейронов несравненно больше, чем преганглионарных волокон. Например, в верхнем шейном симпатическом ган­глии одно преганглионарное симпатическое волокно контактирует более чем с сотней эффекторных нейронов. При этом на одном и том же эффекторном нейроне могут оканчиваться разветвления нескольких преганглионарных волокон. Наличие таких широких конвергентных и дивергентных отношений обеспечивает надежность проведения возбуждения. Эта закономерность касается только сим­патической части автономной нервной системы, в двух других ее частях подобная конвергенция практически отсутствует.

 

В интеграции сигналов в низших центрах вегетативной перифе­рии значительная роль отводится пространственной и временной суммации постсинаптических потенциалов. Роль их состоит в том, что поступающие по пресинаптическим терминалям присущие им относительно слабые сигналы благодаря этим процессам трансформируются, превращаясь в сверх­пороговые постсинаптические по­тенциалы эфферентного нейрона.

 

Тело эффекторной клетки ду­ги автономного рефлекса пред­ставляет собой мигрировавшую из спинного мозга клетку, распола­гающуюся в одном из перифери­ческих автономных ганглиев (рис. 4.24). Нейроны этих ганглиев ох­ватывают своим влиянием, как правило, большие территории висцеральных органов. Ганглии могут располагаться либо около позвоночника (превертебральные), либо в сплетениях вблизи внут­ренних органов (паравертебральные), наконец, в тканях внутренних органов (интрамуральные, интервисцеральные).

 

Эффекторный нейрон дуги автономного рефлекса по электриче­ским показателям в покоящемся состоянии мало чем отличается от мотонейрона соматической дуги. Однако кратковременная или оди­ночная стимуляция преганглионарных волокон вызывает появление в нем сложной последовательности медленных деполяризующих и гиперполяризующих постсинаптических процессов. В этом случае вначале возникает локальный отрицательный потенциал (О-волна), переходящий в положительную П-волну. Последняя сменяется поз­дней отрицательной П-волной. Каждая из этих фаз отражает меж­нейронную передачу, при этом О-волна — возникающий в холинергических синапсах возбуждающий постсинаптический потенциал (ВПСП). Появление П-волны обусловлено возбуждением особой группы преганглионарных волокон, которые оканчиваются на хромаффинных клетках ганглия. Появление деполяризующихся и гиперполяризующихся постсинаптических потенциалов опосредуется мускариноподобным действием ацетилхолина, в то время как ги­перполяризация — специальными вставочными адренергическими клетками, регулируя тем самым возбудимость эффекторных нейронов. Как правило, эффекторный нейрон может иметь, помимо основ­ного возбуждающего холинергического преганглионарного входа, еще и прямой вход сугубо периферического происхождения, пред­ставляющий одно из звеньев местной рефлекторной дуги ганглионарного уровня. Электрофизиологические характеристики эффекторного нейрона позволяют интегрировать эти сигналы и формиро­вать новый выходной сигнал. Благодаря этим местным дугам в эфферентном нейроне поддерживается необходимый уровень спон­танной активности и при децентрализации ганглия сохраняется его рефлекторная функция. У спонтанно активных эфферентных ней­ронов фоновые разряды характеризуются низкой частотой. Они могут возникать синхронно пульсовым толчкам, дыхательным и перистальтическим движениям. Паттерн и ритм разрядов совпадают с показателями преганглионарных волокон или активностью волокон местных рефлекторных дуг.


Дата добавления: 2015-03-04 | Просмотры: 893 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)