АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Актуальность темы. Опухоль, или бластома — это атипическое новообразование ткани, отличающееся от других форм роста (регенерации

Прочитайте:
  1. I. Актуальность темы
  2. I. Актуальность темы
  3. I. Актуальность темы
  4. I. Актуальность темы
  5. I. Актуальность темы
  6. I. АКТУАЛЬНОСТЬ ТЕМЫ
  7. I. Актуальность темы
  8. I. Актуальность темы
  9. I. Актуальность темы.
  10. I. Актуальность темы.

Глава 12

ОБЩЕЕ УЧЕНИЕ ОБ ОПУХОЛЯХ

Актуальность темы

Опухоль, или бластома — это атипическое новообразование ткани, отличающееся от других форм роста (регенерации, гиперплазии, пролиферации, метаплазии) рядом основных биологических свойств (см. ниже). Опухоль может возникать в любой ткани, любом органе и развиваться как у человека, так и у многих животных и растений.

Область медицины, изучающая причины, механизмы развития и клинические проявления опухолей, а также разрабатывающая методы их диагностики, профилактики и лечения носит название – онкология.

Существование злокачественных новообразований было известно человечеству еще в глубокой древности. Гиппократ и другие основатели древней медицины выделяли опухоли среди других заболеваний. Новообразования были найдены у египетских мумий. Вместе с тем до конца ХIХ века опухоли считали относительно редким заболеванием. На протяжении многих веков подлинным бичом человечества были инфекционные болезни. Значительная распространенность инфекционных болезней и высокая смертность от них снижали среднюю продолжительность жизни населения. Так в ХVII веке в странах Европы она не превышала 35 лет. Поскольку злокачественные опухоли встречаются чаще у лиц пожилого возраста, естественно, что распространенность опухолей была невелика, многие люди попросту “не доживали до своего рака”. Кроме того, несовершенство методов диагностики, сравнительная редкость хирургического лечения, отсутствие вскрытий не позволяют даже приблизительно оценить, в каком проценте случаев “водянка”, “желтуха” и тому подобные причины смерти являлись следствием злокачественных опухолей. С конца ХIХ века инфекционные болезни перестают занимать ведущее положение среди заболеваний и причин смерти населения развитых стран Европы и Америки. Их место наряду с сердечно-сосудистыми заболеваниями занимают злокачественные опухоли. Разрешение проблем онкологии становится важнейшей задачей медицинской науки.

Мотивационная характеристика темы. Знание причин, механизма развития опухолей необходимы специалистам различного медицинского профиля для своевременной диагностики, назначения этиопатогенетической терапии, разработки и принятия эффективных мер профилактики.

Цель обученияуметь определятьклинико-морфологические проявления зрелых (доброкачественных) и незрелых (злокачественных) опухолей различного гистогенеза, объяснить вероятные причины и механизм развития, оценить исход и определить значение осложнений для организма.

Для чего необходимо уметь:

– определить отличительные микроскопические признаки опухоли от других форм роста клеток и тканей;

– определить гистогенез опухолей на основании микроскопической, ультраструктурной, иммуногистохимической характеристик;

– различать зрелые и незрелые опухоли на основании выраженности тканевого и клеточного атипизма, характера роста по отношению к окружающим тканям, объяснить вероятную причину и механизм развития;

– определить основные макроскопические формы опухолей: узел, язву, инфильтрат и кисту;

– определить морфологические признаки метастазов, объяснить механизм их образования, вероятные пути метастазирования (лимфогенный, гематогенный, периневральный, контактный) эпителиальных и неэпителиальных опухолей;

– прогнозировать вероятные клинические проявления и осложнения зрелых и незрелых опухолей различного гистогенеза.

 

ЭТИОЛОГИЯ ОПУХОЛЕЙ

 

Агенты, которые вызывают образование опухолей, называются онкогенными. Агенты, вызывающие образование злокачественных опухолей называются канцерогенными.

В настоящее время принято рассматривать четыре группы причин в онкогенезе: это действие химических, физических, вирусных и генетических факторов.

 

Химический онкогенез

 

К химическому онкогенезу относят: действие канцерогенных веществ; пищевой онкогенез; гормональный онкогенез.

Действие канцерогенных веществ. Канцерогенные вещества — это вещества, которые достоверно вызывают образование опухоли или, по крайней мере, вызывают увеличение частоты заболеваемости раком. Большое количество канцерогенных веществ было выявлено во время экспериментов на животных, но из-за разницы в дозах, вызывающих эффект, и метаболических различий между видами нельзя полностью переносить результаты этих исследований на людей. В этой лекции будут рассмотрены те канцерогенные вещества, которые имеют наибольшее значение в возникновении опухолей у людей. Важно подчеркнуть, что: 1 — причина большинства (95%) опухолей у человека неизвестна; 2 — в большинстве случаев опухоли имеют многофакторное происхождение; 3 — за исключением курения, агенты, обсуждаемые ниже, являются причиной в относительно небольшом количестве случаев.

Оценить возможные канцерогенные эффекты многих индустриальных, сельскохозяйственных и бытовых химических веществ, находящихся в низких дозах в окружающей среде очень трудно. Одна из главных проблем, связанных с идентификацией канцерогенных химических веществ — это длинный скрытый период, который длится 20 или более лет. Если вещество не приводит к тяжелым последствиям немедленно, то трудно установить степень его канцерогенности ввиду огромного количества химических веществ, действию которых человек подвергается в течение всей жизни.

Большинство канцерогенных химических веществ вызывают изменения в ДНК, включающее повреждение пуриновых и пиримидиновых оснований, делецию хромосом, разрывы цепей и образование перекрестных связей. Небольшое количество канцерогенных химических веществ действуют эпигенетически, то есть, они вызывают изменения в регулирующих рост белках без нарушений в геноме. Остальные могут действовать синергично с вирусами (дерепрессия онкогенов) или могут служить промоторами для других канцерогенных веществ.

Канцерогенные химические вещества, которые действуют локально, то есть в месте поступления в организм, и не подвергаются метаболическим изменениям, называются непосредственными или прямодействующими канцерогенными веществами. Другие вещества вызывают опухоли только после метаболических преобразований в более активные формы внутри организма. Их называют прокарциногены. Активные канцерогенные производные называются канцерогенными окончательными веществами.

Активность канцерогенных веществ значительно варьирует. В экспериментальных условиях были определены минимальные концентрации некоторых веществ, обязательно вызывающие развитие опухоли. Например, для сахарина это 10 г/кг/д (огромная доза — канцерогенное вещество с низкой активностью); для 2-нафтиламина — 10-1г/кг/д; бензидина — 10-2г/кг/д. и афлатоксина B1— 10-6г/кг/д (наиболее мощное известное канцерогенное вещество).

A. Полициклические углеводы: первым описанным канцерогенным веществом была сажа. Percivall Pott в 1775 в Лондоне установил, что сажа являлась причиной рака мошонки у трубочистов. Сажа из дымоходов накапливалась в складках кожи мошонки, что приводило к развитию рака в ней. Намного позже были определены активные канцерогенные вещества в саже и угольной смоле — это группа полициклических углеводов, наиболее активными из которых были бенз[a]­пи­рен и дибензантрацен. Аппликация на кожу малых количеств этих полициклических углеводов у экспериментальных животных регулярно вызывала развитие рака кожи.

Б. Курение сигарет: курение сигарет приводит к повышению риска возникновения рака легкого, мочевого пузыря, гортани и пищевода. Курение сигарет с фильтром и более новых сигарет с низким содержанием никотина и смол не намного уменьшает риск. Имеются также доказательства того, что риск развития рака, связанного с курением, повышается не только у курильщика, но и у некурящих членов семьи и сотрудников. Было рассчитано, что количество смертных случаев от рака из-за курения больше, чем от всех других известных канцерогенных веществ вместе взятых.

Сигаретный дым содержит многочисленные канцерогенные вещества, наиболее важными из которых вероятно являются полициклические углеводы (смолы). Хотя они являются канцерогенными прямодействующими веществами в коже, при развитии рака мочевого пузыря и легких они выступают как прокарциногены. Вдыхаемые полициклические углеводы преобразовываются в печени при помощи микросомального фермента — арилгидроксилазы — в эпоксиды. Эти эпоксиды (канцерогенные окончательные вещества) являются активными соединениями, связывающимися с гуанином в ДНК, что ведет к неопластическому преобразованию. У курильщиков с развившимся раком легкого активность арилгидроксилазы была намного выше, чем у некурильщиков и курильщиков, не имеющих рака. Риск развития рака варьирует в различных исследованиях, но было установлено, что у человека, выкуривающего 1 пачку сигарет в день в течение 10 лет (10 лет “накопления”), он приблизительно в десять раз выше, чем у некурильщика. Если курильщик бросает курить, то снижение риска возникновения рака до уровня некурильщика происходит приблизительно через 10 лет.

В. Ароматические амины: воздействие ароматических аминов типа бензидина и нафтиламина вызывает увеличение частоты возникновения рака мочевого пузыря (впервые их действие было обнаружено у рабочих кожной и химической отраслей промышленности). Ароматические амины являются прокарциногенами, которые проникают в организм через кожу, легкие и кишечник и их карциногенный эффект проявляется, в основном, в мочевом пузыре. В организме они преобразовываются в карциногенные метаболиты, которые экскретируются почками. Накопление мочи в мочевом пузыре усиливает канцерогенный эффект в слизистой оболочке. Различные биологические виды имеют неодинаковую чувствительность к действию ароматических аминов: человек и собаки наиболее восприимчивы; крысы и кролики — намного меньше. Эти различия подтверждают то, что прокарциногены (которые должны преобразоваться в организме в окончательные канцерогенные вещества) могут оказывать различные влияния на разные виды из-за различий в метаболических процессах. Эти различия являются серьезным препятствием в изучении канцерогенности новых лекарств.

Г. Цикламаты и сахарин: эти вещества являются искусственными подсластителями, которые широко используются больными с сахарным диабетом. Введение больших количеств этих веществ приводит к возникновению рака мочевого пузыря у экспериментальных животных. Четких доказательств канцерогенности их для человека нет, т.к. еще не обнаружили, каким путем они преобразуются в окончательные канцерогенные вещества.

Д. Азокрасители: эти красители раньше использовались как продовольственные окрашивающие вещества, пока не было доказано, что они вызывают развитие опухолей печени у крыс. С тех пор были запрещены. Менее опасные представители этой группы, такие как трипановый синий и синька Эванса, до сих пор используются для окраски гистологических препаратов.

Е. Афлатоксин: афлатоксин — это ядовитый метаболит, производимый грибом Asper­gillus flavus, который, как предполагается, является основной причиной рака печени у людей. Гриб растет на неправильно хранимом продовольствии, особенно зерне и арахисе. В Африке поступление больших количеств афлатоксина с пищей сопровождается высокой частотой возникновения гепатоцеллюлярного рака. Поступающий афлатоксин окисляется в печени, что приводит к появлению окончательного канцерогенного вещества, которое связывает гуанин в ДНК клеток печени. В больших количествах токсин вызывает острый некроз клеток печени, сопровождаемый регенераторной гиперплазией и, возможно, развитием рака. При поступлении меньших количеств (афлатоксин — очень мощное канцерогенное вещество; см. выше) в течение длительного периода преобладает карциногенный эффект.

Ж. Нитрозамины: их способность реагировать с нуклеиновыми кислотами и цитоплазматическими макромолекулами обеспечивает теоретическую основу для их канцерогенного действия. Нитрозамины образуются путем преобразования нитритов в желудке. Нитриты находятся практически во всех продуктах, т.к. они часто используются как консерванты, главным образом в мясных продуктах — ветчине, колбасе и т.д. Прямое локальное действие нитрозаминов, как полагается, является наиболее важной причиной возникновения рака пищевода и желудка. Заметное снижение заболеваемости раком желудка в последние 2 десятилетия в США, как полагают, произошло благодаря улучшению условий хранения продовольствия с широким использованием холодильных установок, что позволило уменьшить потребность в консервантах. Высокая заболеваемость раком желудка в Японии, как предполагают, связана больше с потреблением больших количеств копченой рыбы (содержащей полициклические углеводы), а не благодаря высокому содержанию нитрозаминов в продуктах.

З. Бетельный лист: жевание бетельного листа и бетельного ореха в Шри-Ланке и некоторых областях Индии связано с высокой заболеваемостью раком ротовой полости. Карциногенный агент не был идентифицирован, но как полагают, он присутствует или в бетельном (Areca) орехе, или в измельченном известняке или табаке, которые обычно жуют вместе с бетельным листом.

И. Противоопухолевые лекарства: некоторые лекарства, используемые для лечения опухолей (алкилирующие агенты, типа циклофосфамида, хлорамбуцила, бисульфана и тиотефа) воздействуют на синтез нуклеиновых кислот и в опухолевых клетках, и в нормальных клетках и могут вызывать онкогенные мутации. Лейкемия — наиболее частое неопластическое осложнение химиотерапии рака.

К. Асбест: асбест широко использовался как изоляционный и огнеупорный материал и найден почти во всех постройках, возведенных в США с 1940 по 1970 год. Самое большое индивидуальное поражение асбестом происходило у рабочих верфей во время второй мировой войны. Кроцидолит (разновидность асбеста), имеющий самые тонкие волокна (диаметр < 0.25 мм), представляет наибольшую опасность. Асбестоз также ведет к быстрой фиброзной пролиферации в плевре, что приводит к образованию волокнистых бляшек, которые, вместе с фиброзом легочной ткани, являются надежными радиологическими индикаторами запыления легких асбестом. Асбест ответственен за возникновение двух типов злокачественных опухолей:

1. Злокачественная мезотелиома — это редкое новообразование развивается из мезотелиальных клеток, главным образом в плевре, но также может наблюдаться в брюшине и перикарде. Почти все пациенты со злокачественной мезотелиомой имеют в анамнезе работу с асбестом.

2. Бронхогенная карцинома — у людей, работавших с асбестом, риск возникновения рака легкого приблизительно в два раза выше, чем в популяции; этот риск значительно увеличивается, если человек курит.

Л. Другие промышленные канцерогенные вещества: было выявлено множество других агентов, вызывающих развитие опухолей. У шахтеров повышение заболеваемости раком легкого связано с ингаляцией тяжелых металлов, таких как никель, хром и кадмий. У рабочих в сельском хозяйстве повышение заболеваемости раком кожи и в меньшей степени раком легких связано с мышьяком, который входит в состав некоторых пестицидов. Винилхлорид — газ, используемый в производстве поливинилхлорида, как оказалось, связан с возникновением злокачественных сосудистых новообразований (ангиосарком) печени.

Пищевой онкогенез

Имеются доказательства возникновения опухолей под воздействием пищевых продуктов, которые не являются химическими канцерогенами. Беркитт объяснял низкую заболеваемость раком кишечника у африканцев высоким содержанием в пище растительных волокон, что приводит к быстрому пассажу содержимого кишечника. «Западные» диеты с низким содержанием растительных волокон приводят к замедлению пассажа пищи по кишечнику. Медленное движение химуса по кишечнику приводит к увеличению числа и активности анаэробных бактерий, ферменты которых, как предполагается, вызывают дегидрогенацию желчных кислот с образованием канцерогенных веществ. Медленный пассаж также продлевает время действия любых находящихся в пище канцерогенных веществ. Диета с высоким содержанием животных жиров по статистике связана с увеличением частоты возникновения рака кишечника и молочной железы; это наблюдение остается необъясненным. В настоящее время изучается влияние высоких доз b-каротина, витамина C, витамина E и селена, которые оказывают защитный эффект, возможно в результате их антиоксидантного действия.

Гормональный онкогенез

1. Эстрогены — у больных с гормонально-активными (эстроген-синтезирующими) опухолями яичника (зернистоклеточная опухоль) или с постоянными нарушениями овуляции (возникающими в результате повышения уровня эстрогенов) часто развивается рак эндометрия. Эстрогены вызывают гиперплазию эндометрия, которая сопровождается сначала цитологической дисплазией, переходящей затем в неоплазию.

2. Гормоны и рак молочной железы — поскольку у мышей только женского пола развивался рак молочной железы после воздействия фактора молока Биттнера, было доказано, что эстрогены так или иначе причастны к возникновению заболевания; было показано, что при введении мужским особям мышей эстрогенов они становятся в одинаковой степени восприимчивыми к возникновению рака. Однако, массовые обследования пациенток, принимающих оральные контрацептивы с высоким содержанием эстрогенов, показали, что риск развития рака молочной железы увеличивается незначительно. Современные контрацептивы с низким содержанием эстрогенов не увеличивают риск развития рака молочной железы.

3. Диэтилстилбэстрол — этот синтетический эстроген использовался в высоких дозах с 1950 по 1960 год для лечения угрожающего выкидыша. У детей, которые внутриутробно были подвержены влиянию диэтилстилбэстрола, было определено значительное увеличение заболеваемости светлоклеточной аденокарциномой, которая является редким раком влагалища и развивается у молодых женщин между 15 и 30 годами.

4. Стероидные гормоны использование оральных контрацептивов и анаболических стероидов иногда связывают с возникновением доброкачественных печеночноклеточных аденом. Также было описано несколько случаев возникновения печеночноклеточного рака.

 

Физический (лучевой) онкогенез

 

Многие виды излучений могут приводить к развитию опухолей, наиболее вероятно в результате прямого эффекта на ДНК или из-за активации клеточных онкогенов.

A. Ультрафиолетовое излучение: солнечное ультрафиолетовое излучение играет роль в возникновении различных видов рака кожи, включая плоскоклеточный рак, базальноклеточный рак и злокачественную меланому. Новообразования кожи особенно часто возникают у светлокожих людей, находящихся длительно на солнце. Рак кожи, который развивается под действием ультрафиолетового излучения, включая меланому, очень редко наблюдается у темнокожих рас из-за защитного эффекта меланина. Ультрафиолетовый свет, как полагают, стимулирует формирование связей между пиримидиновыми основаниями в молекуле ДНК. В норме измененная молекула ДНК быстро восстанавливается. Рак развивается при неэффективном функционировании механизмов репарации ДНК, что наблюдается у пожилых людей и у людей с пигментной ксеродермой.

Б. Рентгеновское излучение: после открытия рентгеновского излучения у первых рентгенологов, которые подвергались воздействию излучения с малой проникающей способностью, часто развивался лучевой дерматит, что приводило к увеличению заболеваемости раком кожи. По мере увеличения проникающей способности излучения, у последующего поколения рентгенологов увеличилась заболеваемость лейкемией. Современные рентгенологи имеют высоко эффективные защитные средства против рентгеновского излучения. В 50-ых годах полагали, что увеличенный тимус является причиной обструкции дыхательных путей у грудных детей (позже было доказано, что это мнение было неверным; большой тимус — норма у грудных детей). Поэтому грудные дети с респираторным дистресс-синдромом подвергались лучевой терапии шеи для уменьшения размеров тимуса, что привело к возникновению у большого количества этих детей папиллярного рака щитовидной железы через 15-25 лет. Одним из осложнений радиотерапии злокачественных опухолей является развитие индуцированных излучением злокачественных новообразований, обычно сарком, через 10-30 лет после лучевой терапии. Диагностические рентген-исследования используют настолько малые дозы радиации, что они не приводят к увеличению заболеваемости раком. Единственное исключение — это рентген-исследование брюшной полости в течение беременности, которое может привести к развитию лейкемии у плода.

В. Радиоизотопы: канцерогенный эффект радиоактивных материалов впервые был определен в результате расследования причин возникновения большого количества остеосарком у рабочих фабрики, где использовались радий-содержащие краски в производстве люминесцентных циферблатов. Было замечено, что эти рабочие собирали волокна кисточек в тонкий пучок языком и губами, глотая, таким образом, большие количества радия. Радиоактивный радий метаболизируется в организме по тому же самому пути, что и кальций, а, следовательно, он попадает в кости, что и приводит к развитию остеосарком. Профессиональная вредность, обусловленная работой с радиоактивными полезными ископаемыми в шахтах центральной Европы и западной Америки, связана с увеличением заболеваемости раком легких.

Торотраст, радиоактивный препарат, содержащий радиоактивный торий, использовался в радиологической диагностике с 1930 по 1955 годы. Торотраст накапливается в печени и увеличивает риск возникновения нескольких типов рака печени, включая ангиосаркому, печеночноклеточного рака и холангиокарциномы (рак из желчных протоков).

Радиоактивный йод, который используется для лечения неопухолевых болезней щитовидной железы, приводит к увеличению риска развития рака, который возникает через 15-25 лет после лечения; риск такой терапии оценивается по характеру первичной болезни, терапевтическому эффекту и возрасту пациента.

Г. Радиоактивное загрязнение: три большие группы людей были подвержены действию радиоактивных осадков. Это японцы в Хиросиме и Нагасаки, пережившие атомную бомбардировку, у которых значительно увеличилась заболеваемость лейкемией и раком молочной железы, легких и щитовидной железы. Жители Маршальских островов случайно подверглись воздействию радиоактивных осадков во время атмосферного испытания ядерной бомбы на юге Тихого океана. Радиоактивные осадки были богаты радиоактивным йодом, что привело к развитию множественных новообразований щитовидной железы. Во время катастрофы на Чернобыльской атомной электростанции в 1986 году также в атмосферу попал радиоактивный йод, что привело к поражению нескольких тысяч людей.

Вся доза облучения, получаемая человеком при рентген- и радиоизотопных исследованиях, исходящая от атомных электростанций и т.п. в настоящее время составляет менее 1% от общего облучения; остальная доза приходится на излучения радиоактивных пород, непосредственно земли и космических лучей (то есть, на неустранимое фоновое излучение).

 

Вирусный онкогенез

 

ДНК- и РНК-вирусы могут стать причиной неоплазий. Присутствие вирусного генома в клетке можно выявить различными способами: а) методом гибридизации обнаруживаются вирус-специфичные последовательности нуклеиновых кислот; б) определение вирус-специфичных антигенов на инфицированных клетках; в) обнаружение вирус-специфичной мРНК.

A. Онкогенные РНК-вирусы: онкогенные РНК-вирусы (ретровирусы, которые раньше назывались онкорнавирусами) являются причиной многих новообразований у экспериментальных животных. Роль ретровирусов была доказана и для некоторых опухолей.

1. Японская T-клеточная лейкемия — эта форма лейкемии была впервые описана в Японии. Ретровирус (человеческий T-лимфоцитарный вирус I типа [HTLV-I]) был выделен из клеток этой опухоли; вирус, как полагают, играет прямую этиологическую роль.

2. Опухоли, связанные с ВИЧ-инфекцией — вирус иммунодефицита человека (ВИЧ) является ретровирусом (лентивирус), который поражает в основном Т-лимфоциты (хелперы) человека и вызывает развитие синдрома приобретенного иммунодефицита (СПИДа). Доказана роль этого вируса в онкогенезе злокачественных B-клеточных лимфом при СПИДе.

3. Другие опухоли — имеются неточные доказательства вирусного происхождения некоторых опухолей кроветворной системы. Биоптаты тканей, взятых от многих пациентов с лейкемиями и лимфомами, содержат вирусную обратную транскриптазу, а также имеются сообщения о выделении вируса в культурах или идентификации вирусной нуклеиновой кислоты в ДНК опухолевых клеток при лейкемии.

Б. Онкогенные ДНК-вирусы: несколько групп ДНК-вирусов могут быть причиной новообразований у человека.

1. Вирусы папилломы — эти вирусы вызывают доброкачественные эпителиальные новообразования в коже и слизистых оболочках, включая обычные бородавки, остроконечные кондиломы и рецидивирующие папилломы гортани (палилломатоз гортани).

2. Вирус Эпштейн-Барра (EBV) — этот герпесвирус является причиной инфекционного мононуклеоза — широко распространенного острого инфекционного заболевания. Также он причастен к развитию лимфомы Беркитта и назофарингеального рака.

3. Вирус гепатита В — этот вирус, как полагается, является причиной печеночноклеточного рака в Африке, где наблюдается высокая заболеваемость гепатитом В и имеется большое количество носителей данного вируса. Длительная пролиферация печеночных клеток (регенерация) в ответ на вирусное повреждение, вероятно, является основным фактором, предрасполагающим к неопластической трансформации.

 

Генетический онкогенез (роль наследственности в онкогенезе)

 

В большинстве случаев генетическая предрасположенность к развитию новообразований возникает из-за унаследованной потери одного или нескольких генов подавления (супрессии) опухоли (табл. 12.1).

Новообразования с наследованием по законам Менделя: теоретически, ответственные за возникновение опухолей гены могут быть доминантными или рецессивными. Если ген является доминантным, то при его наличии синтезируются молекулы, вызывающие образование опухоли. Если ген является рецессивным, то для развития опухоли необходимо отсутствие нормальных генов, необходимых для поддержания нормального контроля над ростом.

1. Ретинобластома — это редкое злокачественное новообразование сетчатки наблюдается у детей и в 10% случаев оно является наследственным. Морфологические признаки семейной ретинобластомы не отличаются от ненаследственной формы. Однако семейная форма имеет характерные особенности: (1) она обычно двусторонняя; (2) при хромосомном анализе обязательно обнаруживается нарушение структуры длинного плеча 13 хромосомы (13q14, ген ретинобластомы [Rb1]); и (3) в некоторых случаях происходит спонтанное выздоровление. При этом личности с регрессировавшей опухолью становятся носителями гена ретинобластомы и передают его потомству. Ретинобластома передается по доминантному типу в результате высокой частоты делеции первоначально нормальной 13 хромосомы. Таким образом, Rb1 ген является геном супрессии опухоли (табл. 12.1). При недавних исследованиях было обнаружено присутствие подобных нарушений в 13 хромосоме при некоторых других опухолях, включая остеосаркому и мелкоклеточный недифференцированный рак легкого. Кроме того, у выживших после семейной ретинобластомы, как оказалось, имеется высокий риск возникновения мелкоклеточного недифференцированного рака легких, особенно, если они курят сигареты.

2. Опухоль Вильмса (нефробластома) — злокачественное новообразование почки, которое развивается главным образом у детей. Во многих случаях определяется делеция части 11 хромосомы. И спорадические, и семейные случаи имеют механизм, сходный с таковым при ретинобластоме. И также нарушения в 11 хромосоме (11p13) идентифицируются при других типах опухолей. WT-1 также является геном супрессии опухоли.

3. Другие унаследованные новообразования — некоторые другие новообразования также имеют наследственную предрасположенность. Ранее полагали, что они наследуются по доминантному типу, но это представление было переоценено после открытия рецессивных генов супрессии опухолей.

А. Нейрофиброматоз (1 тип болезни Вон Реклингхаузена) — эта опухоль характеризуется развитием множественных нейрофибром и пигментированных пятен неправильной формы на коже (цвета “кофе с молоком”). При нейрофиброматозе, NF-1 ген (хромосома 17q11) или отсутствует, или имеет нарушенное строение, что ведет к потере NF-1 супрессорного белка. NF-1 белок, как предполагается, регулирует активность производных (гуанин-связывающие «G» белки) ras прото-онкогена. При потере NF-1 рост-активирующий эффект G белков ничем не компенсируется.

Б. Множественный эндокринный аденоматоз — это заболевание проявляется доброкачественными новообразованиями в щитовидной, паращитовидных железах, гипофизе и мозговом веществе надпочечников.

В. Семейный полипоз кишечника — полипоз кишечника характеризуется наличием многочисленных аденоматозных полипов в толстой кишке. (Имеется потеря гетерозиготности на длинном плече 5 хромосомы, APC гена). В конечном итоге развивается рак толстой кишки у всех больных, которым не выполняется колонэктомия. Данное заболевание является самым наглядным доказательством теории многочисленных толчков, последовательно приводящих к возникновению злокачественного новообразования. Синдром Гарднера — вариант, при котором кишечные полипы сочетаются с доброкачественными новообразованиями и кистами в костях, мягких тканях и коже. Синдром Туркота, очень редкая болезнь, при которой многочисленные аденоматозные полипы толстой кишки сочетаются со злокачественными опухолями (глиомами) симпатической нервной системы.

Д. Синдром невоидного базальноклеточного рака — это нарушение характеризуется диспластическими меланоцитарными невусами и базальноклеточным раком кожи.

Новообразования с полигенетическим наследованием: многие распространенные новообразования являются семейными в меньшей степени, то есть, они возникают у родственных личностей более часто, чем в популяции вообще.

1. Рак молочной железы — родственники (матери, сестры, дочери) женщин, заболевших раком молочной железы в пременопаузном периоде, имеют повышенный риск возникновения рака молочной железы (в пять раз выше, чем в общей популяции).

2. Рак кишечника — рак толстой кишки обычно наблюдается в семьях с наследственным семейным полипозом кишечника.

 

ТЕОРИИ РАЗВИТИЯ ОПУХОЛЕЙ

 

В настоящее время существуют две основных теории возникновения новообразований - это теория моноклонального происхождения и теория “опухолевого поля”.

Согласно теории моноклонального происхождения, первоначальный канцерогенный агент (фактор вызывающий опухоль) вызывает мутации одиночной клетки, при делении которой затем возникает опухолевый клон, составляющий новообразование. Моноклональное происхождение новообразований было доказано на примере опухолей из B-лимфоцитов (B-клеточные лимфомы и плазмоклеточные миеломы), клетки которых синтезируют иммуноглобулины одного класса, а также на некоторых других типах опухолей. Доказано также, что по мере прогрессирования опухоли из начального клона опухолевых клеток могут развиваться субклоны в результате дополнительных продолжающихся генетических изменений («многократные толчки»; см. ниже).

Теория “опухолевого поля”: канцерогенный агент, воздействуя на большое количество сходных клеток, может вызывать образование поля потенциально неопластических клеток. Новообразование может затем развиться в результате размножения одной или большого количества клеток внутри этого поля. Во многих случаях в результате возникает несколько обособленных новообразований, каждое из которых происходит от отдельного клонального предшественника. Образование опухолевого поля может быть расценено как первый из двух или более последовательных этапов, которые ведут к развитию опухоли («многократные толчки»; см. ниже). Эта теория объясняет происхождение некоторых новообразований в коже, эпителии мочевыводящих путей, печени, молочной железе и кишечнике. Признание факта существования опухолевого поля имеет практическое значение, так как наличие одного новообразования в любом из этих органов должно насторожить клинициста в отношении возможности наличия второго подобного новообразования. В молочных железах, например, развитие рака в одной из них является фактором риска возникновения рака в противоположной (по статистике риск повышается приблизительно в 10 раз по сравнению с общей заболеваемостью раком молочной железы).

Для объяснения механизмов возникновения как опухолевого моноклона, так и “опухолевого поля” в настоящее время предложен ряд других концепций.

Теория генетических мутаций. Нарушения в геноме, обусловленные наследственностью, спонтанными мутациями или действием внешних агентов, могут вызывать неоплазию, если повреждаются регулирующие рост гены. Опухолевая трансформация происходит в результате активации (или дерепрессии) специфических последовательностей ДНК, известных как рост-регулирующие гены, или прото-онкогены. Эти гены кодируют ряд факторов роста и рецепторов для факторов роста. Активация — это функциональные изменения, при которых нарушается нормальный механизм регулирования роста в онкогенезе. Активация может происходить несколькими способами: мутация прото-онкогенов; транслокация в более активную часть генома, где регулирующие влияния активируют прото-онкогены; вставка онкогенного вируса в активную часть генома; амплификация (продуцирования многократных копий прото-онкогенов); вставка вирусных онкогенов; дерепрессия (потеря супрессорного контроля). Возникающий функционально активированный ген называется «активированный онкоген» (или мутантный онкоген, если он изменяется структурно), или просто как клеточный онкоген (c-onc). Увеличение продукции стимулирующих факторов роста или их рецепторов, или уменьшение ингибирующих (супрессорных) факторов роста, или продукция функционально ненормальных факторов может привести к неуправляемому росту клеток. Таким образом, на молекулярном уровне неоплазия представляет собой нарушение функции регулирующих рост генов (прото-онкогенов и супрессорных генов опухолей).

Теория вирусных онкогенов. Некоторые РНК-вирусы содержат последовательности нуклеиновых кислот, которые являются комплементарными к прото-онкогену и могут (при действии обратной транскриптазы) синтезировать вирусную последовательность ДНК, которая является по существу идентичной. Эти последовательности названы вирусными онкогенами (v-onc). Многие, возможно, все онкогенные РНК-ретровирусы содержат такие последовательности и они найдены в соответствующих новообразованиях. В настоящее время предполагается, что онкогенные РНК-вирусы приобретают v-onc последовательности путем вставки клеточного онкогена из клетки животного или человека с помощью механизма, подобного участвующему в рекомбинации. Онкогенные ДНК-вирусы также содержат последовательности, которые функционируют как онкогены и встраиваются непосредственно в геном клетки.

Эпигенетическая теория. Согласно эпигенетической теории, основное клеточное повреждение происходит не в генетическом аппарате клетки, а в механизме регуляции активности генов, особенно в белках, синтез которых кодируют рост-регулирующие гены. Различные уровни активности генов, которые ответственны за дифференцировку тканей, как предполагается, определяются наследуемыми эпигенетическими механизмами. Основное доказательство роли эпигенетических механизмов в процессах онкогенеза обнаруживается при образовании опухолей под воздействием некоторых химических веществ, которые не оказывают никакого эффекта на генетической аппарат клетки. Действие некоторых из этих веществ состоит в связывании цитоплазматических белков, а изменения в них, как предполагается, способствуют возникновению некоторых новообразований, т.е. эти вещества выступают в роли промоторов.

Теория отказа иммунного надзора. Согласно этой теории неопластические изменения довольно часто происходят в клетках организма. В результате повреждения ДНК неопластические клетки синтезируют новые молекулы (неоантигены, опухолевые антигены). Иммунная система организма распознает эти неоантигены как “чужие”, что приводит к активации цитотоксического иммунного ответа, который уничтожает неопластические клетки. Клинически обнаруживаемые новообразования возникают только в том случае, если они не распознаются и не разрушаются иммунной системой. Доказательством этой теории является то, что большая частота возникновения опухолей наблюдается при иммунодефицитах и у пациентов, получающих иммуносупрессивную терапию после пересадки органов. Объяснением того, что рак в основном является болезнью пожилых, может быть то, что в старости наблюдается прогрессивное снижение иммунной реактивности на фоне увеличения частоты неопластических изменений, возникающих из-за дефектов репарации ДНК, которые наблюдаются при старении. Против данной теории говорят следующие факты: у мышей с недостаточностью Т-клеточного иммунитета частота новообразований не повышается; у людей с иммунодефицитами развиваются главным образом лимфомы, а не полный спектр различных опухолей; у людей с удаленным тимусом частота возникновения опухолей не увеличивается; хотя многие опухоли синтезируют опухолевые антигены и иммунный ответ на них развивается в достаточной мере, но этот ответ часто оказывается неэффективным.

 

МОРФОГЕНЕЗ ОПУХОЛЕЙ

 

Многократные толчки и многочисленные факторы. Кнудсен предложил теорию, согласно которой для развития опухоли необходимо два толчка. Первый связан с первой встречей с канцерогенным агентом — этот момент называется инициирование, а канцерогенное вещество, вызывающее это изменение — инициатор. Второе воздействие, которое стимулирует неопластический рост, называется промоцией, а агент — промотором. Сейчас доказан факт существования этих этапов - многократных толчков (пять и более). Доказано, что очень многие факторы могут вызывать эти толчки, и что каждый толчок производит изменения в геноме подвергающейся воздействию клетки, которые передаются потомству (то есть, неопластическому клону). Период между первым толчком и возникновением клинически определяемой опухоли назван скрытым периодом. У оставшихся в живых после атомной бомбардировки жителей Хиросимы и Нагасаки самое большое число случаев лейкемии зарегистрировано приблизительно через 10 лет после события, а некоторых раковых опухолей — еще на 20 лет позже. Длинный скрытый период объясняет трудность идентификации канцерогенных агентов для наиболее часто встречающихся новообразова­ний. В течение скрытого периода в поврежденной клетке невозможно найти структурные или функциональные нарушения. При более точных методах исследования можно определить эти изменения, особенно в геноме, но они не выявляются морфологически.

 

Предопухолевые (предраковые) изменения в тканях и органах

Как уже было отмечено, «скрытый период» охватывает промежуток времени между инициированием канцерогенного процесса и клиническим обнаружением опухоли. Последовательные «многократные толчки», которые являются необходимой частью канцерогенеза, происходят в течение первой части этого периода, который длится от нескольких лет до 3 или более десятилетий, в результате чего образуется первая неопластическая клетка. При последующем делении этой клетки и ее потомства (злокачественный клон) образуется клинически обнаруживаемое новообразование (приблизительно 109клеток); этот период длится еще несколько месяцев или лет, составляя последний этап скрытого периода. В большинстве препаратов на этих этапах не выявляется никаких клинических или морфологических нарушений. Однако, в некоторых случаях определяются промежуточные состояния, которые характеризуются отличным от неопластического типом роста. Такие изменения названы предопухолевыми (предраковыми) (табл. 12.2).

Очень важно распознать предопухолевые повреждения, т.к. при удалении измененной ткани предупреждается развитие опухолей. Несмотря на то, что гиперплазия и метаплазия не опасны в плане развития опухоли, постоянное воздействие патогенного фактора может привести к трансформации их в дисплазию, которая имеет высокий риск преобразования в опухоль.

Признаки дисплазии. Термин «дисплазия» должен использоваться ограниченно при наличии нарушений роста клеток, что проявляется в виде:

A. Изменения ядер: 1) дисплазия характеризуется увеличением и абсолютных размеров ядра, и относительных (относительно цитоплазмы) — увеличение ядерно-цитоплазматического отношения; 2) увеличение содержания хроматина (гиперхромия); 3) нарушение структуры и расположения хроматина (образование крупных глыбок); 4) нарушения строения ядерной мембраны (утолщение и сморщивание).

Б. Изменения цитоплазмы: цитоплазматические нарушения при дисплазии возникают из-за нарушения нормальной дифференцировки, например, недостаточная кератинизация в ороговевающих клетках и недостаток слизеобразования в железистом эпителии.

В. Увеличение скорости деления клеток: в ороговевающем эпителии увеличение скорости деления клеток характеризуется присутствием митотических фигур в большом количестве слоев эпителия (в нормальном состоянии митозы обнаруживаются только в базальном слое). Морфологически при дисплазии митозы нормальные.

Г. Нарушенное созревание: диспластические эпителиальные клетки сохраняют сходство с базальными стволовыми клетками, несмотря на продвижение их вверх в эпителии; то есть, нормальное дифференцирование (образование кератина) будет нарушено.

Дисплазия обычно разделяется на легкую, умеренную и выраженную.

Значение дисплазии. Эпителиальная дисплазия является предопухолевым состоянием, связанным с повышенным риском возникновения рака. Проще говоря, от дисплазии до рака — один короткий шаг. В шейке матки синонимом выраженной дисплазии является термин “цервикальное внутриэпителиальное новообразование” (CIN) (рис. 1). Необходимо заметить, что carcinoma in situ — это истинная опухоль со всеми особенностями злокачественных новообразований, кроме инвазивности. Тяжелая дисплазия шейки матки и carcinoma in situ имеют одинаковое клиническое значение и лечатся одинаково.

Риск возникновения инвазивного рака зависит от: 1) выраженности дисплазии — чем она тяжелее, тем больше риск; 2) продолжительности дисплазии — чем больше срок существования дисплазии, тем больше риск; и 3) локализации дисплазии. Дисплазия в мочевом пузыре имеет более выраженный риск перерасти в рак, чем цервикальная дисплазия, при которой может пройти несколько лет, прежде чем возникнет инвазивная карцинома.

Различия между дисплазией и раком. Дисплазия и carcinoma in situ отличаются от истинного рака двумя важными свойствами: инвазивностью и реверсивностью.

A. Отсутствие инвазивности: аномальная ткань при дисплазии и carcinoma in situ не проникает через базальную мембрану. Так как эпителий не содержит ни лимфатических, ни кровеносных сосудов, пролиферирующие клетки не распространяются за пределы эпителия. Поэтому полное удаление диспластической области приводит к полному выздоровлению. Рак, напротив, разрушает базальную мембрану и распространяется из первичного очага по лимфатическим и кровеносным сосудам, поэтому удаление первичного очага не приводит к излечению.

Б. Реверсивность: диспластическая ткань, особенно при незначительно выраженной степени, может иногда спонтанно возвращаться к нормальному состоянию, а рак является необратимым процессом. Однако тяжелая дисплазия может быть необратима.

 

Диагностика дисплазий

A. Макроскопическое исследование: эпителиальная дисплазия, включая carcinoma in situ, является обычно асимптоматической и во многих случаях при макроскопическом исследовании слизистой оболочки патологии не выявляется. Дисплазия иногда может быть выявлена при помощи специальных методов исследования (например, кольпоскопия для цервикальной дисплазии, флуоресцентная бронхоскопия при бронхиальной дисплазии). Тест Шиллера для определения цервикальной дисплазии основан на недостатке клеточной дифференцировки диспластического эпителия — при окрашивании шейки раствором йода нормальные клетки эпителия окрашиваются в коричневый цвет вследствие содержания в них гликогена; диспластический эпителий остается неокрашенным из-за отсутствия гликогена в нем.

B. Микроскопическое исследование: мазки делаются путем соскабливания эпителия для цитологической диагностики. Цитологические находки в мазках должны подтверждаться биопсией. Микроскопическая оценка ядерных и цитоплазматических изменений в диспластической ткани позволяет поставить диагноз и определить степень выраженности дисплазии. Критерии для цитологического диагноза дисплазии разработаны для шейки матки, мочевого пузыря и легких. В новообразованиях другой локализации, например, в ЖКТ и молочной железе, очень трудно отличить дисплазию от других эпителиальных изменений, связанных с воспалением и регенерацией (восстановление и регенерация включают в себя пролиферацию клеток, при этом может наблюдаться клеточная дезорганизация различной степени; такие изменения часто объединяются под менее точным термином «атипия»).

Массовое цитологическое обследование по Папаниколау цервикальных мазков обеспечивает раннее обнаружение и лечение цервикальной дисплазии. Широкое распространение в США использования мазков по Папаниколау способствовало поразительному снижению возникновения рака шейки матки за последние 20 лет. Результаты цитологического обследования других органов оказались менее успешными. Хотя дисплазия может диагностироваться в легких (мазки из мокроты), мочевом пузыре (мазки из мочи), желудке (щеточная биопсия) и кишечнике (промывные воды), полное удаление всего диспластического эпителия в этих тканях затруднительно. В результате массовое исследование на дисплазии в этих тканях не рекомендуется и ранняя диагностика дисплазий не повлияла на статистику обнаружения рака в этих органах.

 

МОРФОЛОГИЯ ОПУХОЛЕЙ

 

Свойства опухолей, отличающие их от других форм роста и определяющие их сущность — это:

—органоидность;

—атипизм;

—беспредельность роста;

—нецелесообразность

—относительная автономность;

—прогрессия.

Органоидность. Опухоль состоит из паренхимы и стромы. Паренхима — собственная ткань опухоли, составляющая главную ее массу и определяющая ее рост и характер. Строма состоит из соединительной ткани; в ней проходят питающие опухоль сосуды и нервы.

Атипизм — это совокупность биологических свойств, отличающих новообразованную ткань от исходной ткани. Приобретение опухолевой клеткой новых, не присущих нормальной клетке свойств получило название анаплазии (от греч. ana — обратно, plasis — образование) или катаплазии (от греч. kata — сверху вниз, plasis — образование). Термин катаплазия наиболее принят в современной литературе. Различают морфологический, функциональный, антигенный атипизм и атипизм обмена веществ (метаболический).

Морфологический атипизм подразделяют на тканевой и клеточный.

Тканевой атипизм характеризуется нарушением размеров, формы и взаимоотношений тканевых структур. Например, в эпителиальных, в частности, железистых опухолях нарушена величина и форма желез, утрачивается дольчатое строение органа, соотношение паренхимы и стромы широко варьирует — в одних случаях паренхима преобладает над стромой, в других наоборот, строма преобладает над паренхимой. Нарушение взаимоотношения тканевых структур в опухолях из покровного эпителия проявляется в том, что эпителиальный пласт кожи может располагаться в толще дермы, а не на поверхности. В опухолях мезенхимального происхождения (соединительнотканных, мышечных) пучки волокон отличаются длиной, толщиной, хаотичным расположением. Атипизм стромы может проявляться количественными и качественными характеристиками волокнистого компонента, а также соотношением клеточного и волокнистого компонентов. Атипичными могут быть и сосуды. Обычно они тонкостенные, представленные нередко одним слоем эндотелиальных клеток, либо их стенку образуют опухолевые клетки. Просвет их широкий. Атипизм сосудов создает предпосылку для развития вторичных изменений в опухолях, обусловленных расстройствами кровообращения. Тканевой атипизм наиболее характерен для зрелых, доброкачественных опухолей.

Клеточный атипизм на светооптическом уровне выражается в полиморфизме клеток, ядер и ядрышек, полиплоидии, изменении ядерно-цитоплазматического индекса в поль­зу ядер, появлении множества митозов.

Опухолевые клетки отличаются разнообразием размеров, формы и плотности ядер. Нередко ядра бывают крупные гиперхромные, содержат несколько ядрышек, иногда гипертрофированных. Изменение размеров ядер опухолевых клеток в определенной степени может быть связано со сдвигом в них числа хромосом (количества ДНК). Для опухолевых клеток характерна анэуплоидия, то есть количество ДНК, отличное от диплоидного набора хромосом, при этом чаще всего оно повышено и может соответствовать триплоидному или полиплоидному набору хромосом. Однако необходимо знать, что диплоидное нормальное число хромосом может иногда встречаться и в новообразованиях высокой степени злокачественности. Кроме того, связи между степенью плоидности и гистологическим строением опухоли, ее пролиферативной способностью или другими свойствами новообразования не обнаружено.

Клеточный атипизм может быть выражен в разной степени. При пролиферации доброкачественных или медленно растущих злокачественных опухолей неопластические клетки имеют тенденцию к дифференцировке. Например, клетки, составляющие липому (доброкачественное новообразование из адипоцитов) схожи со зрелыми адипоцитами при микроскопическом исследовании. По мере увеличения степени злокачественности степень дифференцировки уменьшается. Иногда клеточный полиморфизм так значителен, что опухолевые клетки по внешнему виду становятся непохожими на клетки исходной ткани или органа. Порой гистологическое строение злокачественной опухоли упрощается и она становится мономорфной (например, в низкодифференцированных мезенхимальных опухолях). Когда происхождение клетки не может быть установлено при микроскопическом исследовании, то есть, клетки новообразования не имеют аналогов среди нормальных клеток, новообразование называют недифференцированным или анапластическим. Анапластические опухоли различных органов очень похожи друг на друга, что очень затрудняет морфологическую дифференциальную диагностику.

В злокачественных новообразованиях нарушения дифференцировки определяются и в цитоплазме, и в ядре клетки. Эти изменения аналогичны таковым при дисплазии, но здесь они более выражены. Они включают плеоморфизм (многообразие форм клеток), увеличение размеров ядра, увеличение ядерно-цитоплазматического отношения, гиперхромию ядер, увеличение ядрышек, нарушение распределения хроматина в ядре, нарушение строения ядерной мембраны и др. Выраженность этих цитологических нарушений увеличивается по мере увеличения степени злокачественности.

Неопластические клетки иногда могут дифференцироваться по иному пути, чем клетки, из которых они развились. Например, в неопластическом железистом эпителии эндометрия иногда образуются и железистые, и ороговевающие эпителиальные клетки (аденосквамозный рак). Для обозначения этого явления используется термин «опухолевая метаплазия».

Важным проявлением морфологического атипизма опухолевой клетки является патология митотического режима. Митотический режим охватывает ряд параметров, характеризующих митоз с различных сторон: митотический индекс, отражающий митотическую активность, то есть процент делящихся клеток от всей популяции; процентное соотношение делящихся клеток, находящихся на разных стадиях митоза; относительное количество всех патологических митозов; процентное содержание отдельных видов патологических митозов. Установлено, что в клетках опухоли нарушена продукция кейлонов, которые в нормальных условиях регулируют митотическую активность клеток и действуют как ингибиторы клеточного деления. Патология митоза в опухолевых клетках подтверждает воздействие онкогенных факторов на генетический аппарат клетки, что и определяет нерегулируемый рост опухоли. Главной особенностью митотического режима клеток злокачественных опухолей является резкий рост числа патологических митозов и разнообразие их видов. Страдает преимущественно метафаза, высок процент К-метафаз со слипанием или рассеиванием гиперспирализованных хромосом, отставание хромосом и их фрагментов в метафазе. Часто встречаются трехгрупповые метафазы, метафазы с рассеиванием и массовой фрагментацией хромосом, асимметричные, многополюсные и моноцентрические митозы. Отдельные виды патологии митоза могут быть характерными для определенных типов опухолей, что может быть использовано в качестве дополнительного критерия при дифференциальной диагностике опухолей разного гистогенеза и уточнения гистогенетической принадлежности новообразования.

Атипизм ультраструктур, выявляемый при электронно-микроскопическом исследовании, выражается в увеличении числа преимущественно свободно лежащих рибосом, полисом, появлении аномальных митохондрий. Цитоплазма скудная, ядра крупные округлой или неправильной формы с маргинальным или диффузным расположением хроматина. Выявляются многочисленные мембранные контакты ядра, митохондрий и эндоплазматической сети, которые в нормальной клетке выявляются очень редко. Все эти признаки характерны для незрелых недифференцированных клеток. Однако при электронно-микроскопическом исследовании можно выявить клетки со специфической дифференцировкой для той ткани, из которой берет начало новообразование. Этот признак часто используется для установления гистогенеза опухоли. Многие исследователи пытались найти специфические для опухолевых клеток электронно-микроскопические признаки, однако, до настоящего времени такие признаки найдены не были. Поэтому поставить диагноз только на основании электронно-микроскопического исследования нельзя.

Нарушения в поверхностной мембране: к поверхностным изменениям мембраны в опухолевых клетках относятся:

— нарушение активности ферментов мембраны;

— уменьшение содержания гликопротеинов;

— нарушения проницаемости, мембранного транспорта и электрического заряда;

— разрушение микротрубочек и микрофиламентов цитоскелета.

Нормальные клетки в культуре растут упорядоченно, плотно связанными монослоями. Деление клеток прекращается при наличии контакта с другими клетками (контактное ингибирование). Напротив, опухолевые клетки растут дезорганизовано, многослойно в виде пластов, которые наслаиваются друг на друга. Потеря контактного ингибирования — важная характеристика неопластических клеток. Предполагается, что она вместе с недостатком прочности связей между отдельными клетками опухоли может частично объяснять способность злокачественных неопластических клеток метастазировать.

Клеточный атипизм наиболее выражен в незрелых, злокачественных опухолях.

Признаки тканевого и клеточного атипизма очень важны, так как они лежат в основе морфологической диагностики опухолей, установления их степени зрелости, или злокачественности.

Атипизм обмена веществ (метаболический) опухолевой ткани выражается в избыточном количестве нуклеиновых кислот, холестерина, гликогена. В опухолевой ткани гликолитические процессы преобладают над окислительными, содержится мало аэробных ферментных систем, то есть цитохромоксидазы, каталазы. Гликолиз сопровождается накоплением в тканях молочной кислоты. Это своеобразие обмена опухоли усиливает ее сходство с эмбриональной тканью, в которой также преобладают явления анаэробного гликолиза.

Продукты синтеза опухолевых клеток: синтез и секреция различных веществ опухолевыми клетками имеет важное значение по двум причинам:

— их присутствие может указывать на существование новообразования в организме, то есть, они выступают в роли маркеров опухоли;

— они могут привести к возникновению клинических проявлений (паранеопластических синдромов), не связанных с прямым влиянием опухоли на ткани.

1. Онкофетальные антигены — это антигены, которые обычно экспрессируются только во внутриутробном периоде, но могут обнаруживаться на неопластических клетках.

Карциноэмбриональный антиген (обычно обнаруживаемый в тканях энтодермального происхождения) был выявлен в большом количестве злокачественных новообразований, происходящих из тканей, которые развиваются из эмбриональной энтодермы, например, в раке кишечника и поджелудочной железы и в некоторых случаях рака желудка и легких. Приблизительно у 30% пациентов с раком молочной железы также обнаруживается этот антиген, которые можно определить иммуногистохимическими мето­дами на опухолевых клетках или измерить его уровень в сыворотке. Карциноэмбрио­нальный антиген не специфичен для рака, так как небольшое увеличение его уровня в сыворотке также наблюдается при некоторых неопухолевых болезнях, например, язвенном колите и циррозе печени. Карциноэмбриональный антиген имеет большое значение не столько в диагностике опухолей, сколько в текущем определении эффективности терапии и в ранней диагностике рецидивов.

Альфа-фетопротеин в норме синтезируется клетками желточного мешка и эмбриональными клетками печени. В постнатальном периоде он синтезируется в опухолях из примитивных герминативных клеток половых желез (эмбриональный рак или рак из желточного мешка) и в раковых опухолях печени. Альфа-фетопротеин может быть обнаружен в тканях иммуногистохимическими методами. Как и карциноэмбриональный антиген, a-фетопротеин может обнаруживаться и при других неопухолевых заболеваниях, например, при циррозах печени.

2. Ферменты — повышение активности в сыворотке простат-специфической кислой фосфатазы наблюдается при раке предстательной железы, обычно после прорастания капсулы железы опухолью. Измерение простат-специфического эпителиального антигена более чувствительно и используется сейчас во многих странах при массовых обследованиях у пожилых людей. Уровни неспецифических цитоплазматических энзимов, типа лактатдегидрогеназы (ЛДГ), повышаются при многих новообразованиях и просто указывают на увеличенный метаболизм и некроз клеток.

3. Иммуноглобулины — в новообразованиях из B-лимфоцитов (некоторые В-клеточные лимфомы, миелома) часто синтезируются иммуноглобулины. Так как эти новообразования являются моноклональными, то синтезируется только один тип иммуноглобулинов. Синтез иммуноглобулинов имеет большое диагностическое значение, если число клеток опухоли достаточно для синтеза такого количество иммуноглобулинов, что при электрофорезе белков плазмы образуется моноклональная полоса.

4. Чрезмерная секреция гормонов — в высокодифференцированных новообразованиях из эндокринных клеток часто наблюдается чрезмерный синтез гормонов. Повышенная продукция возникает не только благодаря увеличению числа клеток, но также и нарушению нормальных механизмов регуляции синтеза.

5. Эктопическая продукция гормонов — синтез гормонов клетками, которые в норме их не синтезируют (так называемая эктопическая продукция гормонов), может наблюдаться в некоторых злокачественных новообразованиях. Это явление возникает в результате дерепрессии генов, связанных с неопластическим процессом.

Возможность использования гистохимических методов для отличия опухолевых клеток от нормальных и патологически измененных основана на сохранении в опухолевых клетках гистохимических признаков соответствующих нормальных гомологичных клеток. Так, например, было установлено, что новообразования щитовидной железы на основании гистохимических свойств опухолевых клеток могут быть идентифицированы в гистогенетическом плане как дифференцирующиеся в сторону А-клеток (низкая активность сукцинатдегидрогеназы), С-клеток (низкая активность сукцинатдегидрогеназы, положительная аргирофильная реакция) или В-клеток (очень высокая активность сукцинатдегидрогеназы). Это важно в практическом отношении, так как новообразования этого органа различного гистогенеза имеют неодинаковое клиническое течение и прогноз. С помощью гистохимических методов можно идентифицировать опухоли из апудоцитов - эндокринных клеток APUD-системы, которая, как известно, объединяет периферические эндокринные клетки, расположенные среди паренхиматозных клеток различных органов. Необходимо отмeтить, что гистохимические свойства клеток могут изменяться в силу различных физиологических сдвигов и патологических процессов как опухолевого, так и неопухолевого характера, поэтому гистохимических критериев, пригодных для объективизации первичной диагностики опухолевой клетки в настоящее время не существует.

Антигенный атипизм. В настоящее время установлено, что опухоли значительно отличаются от исходных нормальных тканей по своей антигенной структуре. Антигенная характеристика опухоли включает в той или иной степени три признака:

— утрату некоторых антигенов, свойственных нормальной исходной ткани;

— появление специфических опухолевых антигенов;

— сохранение некоторых антигенов исходной ткани.

Исчезновение антигенов — некоторые неопластические клетки утрачивают антигены, которые имелись на нормальных клетках. Имеются доказательства связи степени потери антигенов с биологическим поведением новообразований — то есть, чем больше потеря антигенов, тем более злокачественным является новообразование. В опухолях мочевого пузыря, например, те раковые новообразования, которые потеряли ABO-антигены групп крови имеют большую тенденцию к инвазивному росту и метастазированию, чем раковые новообразования, которые сохранили эти антигены.

Благодаря применению иммуногистохимических методик, в частности, моноклональных антител, удалось обнаружить самые незначительные антигенные различия между клетками (в одну детерминанту) и дать их количественную оценку. На основании полученных результатов антигены опухолевых клеток могут быть разделены на четыре группы:

— антигены промежуточных и миофиламентов;

— дифференцировочные антигены клеточной мембраны;

— секреторные антигены;

— антигены экспрессии онкогенов.

В промежуточных филаментах обнаружено пять основных типов белков: виментин, десмин, цитокератин (прекератин), белок нейрофиламентов, белок глиальных филаментов. В клетках мезенхимального происхождения промежуточные волокна состоят из виментина, в миогенных клетках — из десмина, в эпителиальных — из цитокератина, в клетках глии — из белка глии, в нервных клетках — из так называемых белков нейрофиламентов. Иммуногистохимическое изучение с помощью моноклональных антител белков промежуточных волокон в опухолевых клетках различных эпителиальных и мезенхимальных новообразований показало, что в них стойко сохраняются те белки, которые характерны для промежуточных волокон нормальных клеток, явившихся источником развития данной опухоли, причем сохранность белков не зависит от степени катаплазии опухолевых клеток и зрелости новообразования в целом.

Дифференцировочные антигены клеточной мембраны играют разнообразную и важную роль в процессах дифференцировки и функционирования клеток. Созревая, клетка теряет одни мембранные антигены и приобретает другие, может изменяться и количественное соотношение отдельных антигенов. Последовательность изменения антигенной структуры мембран стабильна и строго специфична для каждой стадии дифференцировки определенного типа клеток. Важно то, что мембранные антигены, характерные для определенных стадий дифференцировки нормальных клеток, в той или иной степени сохраняются и в опухолевых клетках, указывая, таким образом, на степень дифференцировки опухолевых клеток, а в ряде случаев и на гистогенез.


Дата добавления: 2015-05-19 | Просмотры: 473 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.037 сек.)