АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Принципы рефлекторной теории

Прочитайте:
  1. I ОБЩИЕ ПРИНЦИПЫ ТЕРАПИИ ОСТРЫХ ОТРАВЛЕНИЙ
  2. II. 4. ХАРАКТЕРИСТИКА АНТИРЕТРОВИРУСНЫХ ПРЕПАРАТОВ И ПРИНЦИПЫ КОМБИНАЦИИ ГРУПП ПРЕПАРАТОВ ДЛЯ ВААРТ
  3. II. Общие принципы иммунодиагностики инфекционных заболеваний
  4. II. Организация хирургической службы в России. Основные виды хирургических учреждений. Принципы организации работы хирургического отделения.
  5. II. Принципы гипосенсибилизации при ГЗТ
  6. III. Принципы лечения впервые выявленного инсулинозависимого сахарного диабета
  7. IX. Общие принципы лечения данного заболевания
  8. IX.1. Общие принципы
  9. LgE-опосредованные заболевания. Принципы диагностики заболеваний. Особенности сбора анамнеза. Наследственные аспекты аллергический заболеваний
  10. V 14: Семиотиканаследственных болезней и принципы их диагностики.

Понятие о регуляции функций. Основные механизмы регуляции, их характеристика и взаимодействие. Принципы регуляции (детерминизма, анализа и синтеза, единства структуры и функции). Понятие о рефлексе. Учение П.К. Анохина о функциональной системе.

Характерной особенностью всякого живого организма является то, что он представляет собой саморегулирующуюся систему. Это достигается взаимодействием всех его клеток, тканей, органов и их систем.

Взаимосвязь функций и реакций организма обусловлена наличием двух механизмов регуляции. Один из них — гуморальный, или химический, механизм регуляции — является филогенетически более древним. Он основан на том, что в различных клетках и органах в ходе процессов обмена веществ образуются различные по своей химической природе и физиологическому действию химические соединения — продукты расщепления и синтеза. Однако они неодинаково действуют на разные клетки: одни клетки более чувствительны к одним химическим раздражителям, другие — к другим.

Частным случаем химической регуляции функций является гормональная регуляция, осуществляемая железами внутренней секреции.
Второй механизм регуляции функций организма— это нервный механизм. Он объединяет, согласует и регулирует деятельность различных клеток, тканей и органов, приспособляя ее к внешним условиям жизни организма. Изменения деятельности и состояния одних клеток и органов через посредство нервной системы рефлекторным путем вызывают изменения функций других клеток и органов. Этот механизм регуляции является более совершенным, во-первых, потому, что взаимодействие клеток через нервную систему осуществляется значительно быстрее, чем гуморально-химическое, во-вторых, потому, что нервные импульсы всегда «имеют в виду» определенного «адресата».

Деятельность нервной системы и химическое взаимодействие клеток и органов обеспечивают важнейшую особенность организма — саморегуляцию физиологических функций, приводящую к автоматическому поддержанию необходимых организму условий его существования. Саморегуляция возможна лишь потому, что имеются обратные связи между регулируемым процессом и регулирующей системой.

П.К. Анохин с сотрудниками провели на животных ряд экспериментальных работ. Один из экспериментов проходил так: «У собаки выделяли два разных нерва - блуждающий и лучевой, разрезали каждый из них поперек на две части - центральную и периферическую, а затем сшивали центральный конец блуждающего нерва с периферическим концом лучевого. Блуждающий нерв связывает мозг с желудком и лёгкими, а лучевой идет к мышцам и чувствительным окончаниям кожи передней лапы. Оказывается, «желудочные» и «легочные» чувствительные волокна подрастали к лапе: при лёгком почесывании кожи у животного начинались неукротимый кашель и хрипы, а при надавливании на мышцу - неукротимая рвота. Совершенно ясно, что вначале собака не могла пользоваться конечностью. Однако через несколько месяцев она чувствовала себя опять здоровой. В мозгу произошла сложная перестройка в работе соответствующих центров. Самое главное, эта перестройка происходила в результате непрерывной повторной (или обратной) сигнализации от места нарушения, и именно эта сигнализация привела к его устранению.

Принципы рефлекторной теории.

1. Принцип детерминизма. Всякий рефлекторный акт является следствием действия раздражителя на организм.

2. Принцип анализа и синтеза. В мозге постоянно происходит анализ, т.е. различение сигналов, а также синтез, т.е. их взаимодействие и целостное восприятие.

3. Принцип структурности. В нервной системе нет процессов, не имеющих определенной структурной локализации.

Рефлекс – это реакция живого организма на изменение внешней или внутренней среды. По ряду признаков рефлексы могут быть разделены на группы.

По типу образования: условные - наследственно передаваемые (врожденные) реакции организма, присущие всему виду; безусловные рефлексы - это наследуемые, неизменные реакции организма на определённые воздействия внешней или внутренней среды, независимо от условий возникновения и протекания реакций. Безусловные рефлексы обеспечивают приспособление организма к неизменным условиям среды.

По расположению: экстероцептивные (кожные, зрительные, слуховые, обонятельные), интероцептивные (с рецепторов внутренних органов) и проприоцептивные (с рецепторов мышц, сухожилий, суставов).

По характеру ответной реакции: соматические, или двигательные (рефлексы скелетных мышц), сердечно-сосудистые – сужение и расширение кровеносных сосудов; секреторные – заканчиваются секрецией желез.

По биологической значимости: оборонительные, или защитные, пищеварительные, половые, ориентировочные.

В зависимости от того какие отделы головного мозга регулирует данный рефлекс: спинальные рефлексы - участвуют нейроны, расположенные в спинном мозге; бульбарные, осуществляемые при участии нейронов продолговатого мозга; мезэнцефальные — с участием нейронов среднего мозга; кортикальные — с участием нейронов коры больших полушарий головного мозга.

Функциональная система – временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата. Функциональная система, по П. К. Анохину, включает в себя пять основных компонентов:

1) полезный приспособительный результат – то, ради чего создается функциональная система;

2) аппарат контроля – группу нервных клеток, в которых формируется модель будущего результата;

3) обратную афферентацию – вторичные афферентные нервные импульсы, которые идут в акцептор результата действия для оценки конечного результата;

4) аппарат управления (центральное звено) – функциональное объединение нервных центров с эндокринной системой;

5) исполнительные компоненты (аппарат реакции) – это органы и физиологические системы организма (вегетативная, эндокринные, соматические).

Свойства функциональной системы:

1) динамичность. В функциональную систему могут включаться дополнительные органы и системы, что зависит от сложности сложившейся ситуации;

2) способность к саморегуляции. Саморегуляция осуществляется при наличии обратной связи.

 

Система крови - понятие, функции. Состав крови: форменные элементы, плазма. Основные физико-химические свойства крови: объем, онкотическое и осмотическое давление, рН, СОЭ. Эритрон - строение, физиологическое значение. Участие различных видов лейкоцитов в иммунитете. Коагуляционный гемостаз.

Кровь состоит из жидкой части – плазмы и отдельных форменных элементов – эритроцитов, лейкоцитов и тромбоцитов. Форменные элементы крови образуются в кроветворных органах (в красном костном мозге, печени, селезёнке, лимфатических узлах).

Система крови обладает рядом особенностей:

1) динамичностью, т. е. состав периферического компонента может постоянно изменяться;

2) отсутствием самостоятельного значения, так как все свои функции выполняет в постоянном движении, т. е. функционирует вместе с системой кровообращения.

Кровь состоит из жидкой части – плазмы и отдельных форменных элементов – эритроцитов, лейкоцитов и тромбоцитов. Форменные элементы крови образуются в кроветворных органах (в красном костном мозге, печени, селезёнке, лимфатических узлах).

Кровь выполняет ряд жизненно важных функций. Защитная функция крови заключается в обеспечении гуморального и клеточного иммунитета. Дыхательная функция обеспечивается путем переноса кислорода и углекислоты. Суть трофической функции - перенос питательных веществ. Экскреторная функция заключается в выведении шлаков. Гуморальная функция обеспечивается путем транспорта гормонов и других биологической активных веществ. Гомеостатическая функция заключается в поддержании постоянства внутренней среды организма, в том числе иммунного гомеостаза. Объем крови в теле человека с массой тела 70 кг составляет около 5–5,5 л.

Плазма крови – это бесцветная жидкость, которая состоит на 90–93 % из воды и сухого вещества, в котором около 6,6–8,5 % принадлежит белкам и 1,5–3,5 % – органические и неорганические соединения.

Эритроциты, или красные кровяные тельца, у человека и млекопитающих представлены высокоспециализированными безъядерными клетками, содержащими гемоглобин для обеспечения транспортировки кислорода и углекислоты в организме.В норме у человека гемоглобин содержится только в виде физиологических соединений: окси-гемоглобин, карб-гемоглобин. Патологические формы: карб-окси-гемоглобин – соединение гемоглобина с угарным газом. Мио-гемоглобин – необходим для снабжения мышц кислородом. Кроме того, эритроциты участвуют в транспорте различных веществ и являются компонентом антиоксидантной системы организма. Количество эритроцитов у женщин – 3,9–4,9 · 1012/л, у мужчин – 4,0–5,2 · 1012/л, с диаметром 7–8 мкм. Эритроциты у человека и млекопитающих во взвешенном состоянии имеют форму двояковогнутого диска, такая конфигурация создаёт наибольшую площадь поверхности по отношению к объёму, что обеспечивает максимальный газообмен. В кровяное русло эритроциты выбрасываются из костного мозга в виде ретикулоцитов, имеющих в цитоплазме зернистость. Продолжительность жизни эритроцитов составляет 28–140 дней. Число эритроцитов у здоровых людей может варьироваться в зависимости от возраста, гормонального фона, психоэмоциональной и физической нагрузок, а также действия экологических факторов.

Лейкоциты (белые кровяные клетки) разнородны по морфологии и биологической роли. Белые кровяные клетки имеют шаровидную форму,в цитоплазме которых находятся гранулы – специфические (вторичные) и азурофильные (лизосомы). В зависимости от типа гранул лейкоциты подразделяются на гранулоциты (зернистые) и агранулоциты (незернистые). Гранулоциты, к которым относятся нейтрофилы, эозинофилы, базофилы, содержат специфические и азурофильные гранулы и дольчатое сегментированное ядро разнообразной формы и называются полиморфноядерными лейкоцитами.

Агранулоциты – моноциты и лимфоциты, содержат только азурофильные гранулы, имеют несегментированное ядро и называются мононуклеарными лейкоцитами.

Нейтрофилы способны покидать внутреннее пространство сосуда и скапливаться в месте инфекции. Время жизни гранулоцитов около 10 дней, после чего они разрушаются в селезенке.

Нейтрофилы – наиболее многочисленные из лейкоцитов и составляют 40–75 % от общего количества лейкоцитов. Количество митохондрий и органелл, необходимых для синтеза белка, минимально, и поэтому нейтрофилы не способны к продолжительному функционированию. Главная функция нейтрофилов – фагоцитоз тканевых обломков и уничтожение микроорганизмов.

Эозинофилы по своим размерам сходны с нейтрофилами, составляют

1–5 % лейкоцитов, циркулирующих в крови. Эозинофилы участвуют в уничтожении паразитов и аллергических реакциях.

Базофилы составляют 0–1 % от общего числа лейкоцитов циркулирующей крови и размерами 10–12 мкм. Активируемые базофилы могут покидать кровоток, выселяться в ткани и мигрировать к очагу воспаления, кроме того, участвовать в аллергических реакциях.

Моноциты – самые крупные лейкоциты с диаметром 15–20 мкм, количество их составляет 2–9 % от всех лейкоцитов циркулирующей крови. Они образуются в костном мозге. Их основная функция – фагоцитоз.

Лимфоциты – небольшие одноядерные клетки, составляют 20–45 % от общего числа лейкоцитов, циркулирующих в крови. Принято выделять малые (4,5–6 мкм), средние (7–10 мкм) и большие лейкоциты (10–18 мкм). Ядра клеток плотные и круглые, цитоплазма голубоватого цвета, с очень редкими гранулами. Их делят на три большие категории: B -клетки, Т -клетки и NK -клетки. B -лимфоциты составляют менее 10 % лимфоцитов крови, созревают у человека в костном мозге, после чего мигрируют в лимфоидные органы. Они служат предшественниками клеток, образующих антитела (плазматические клетки). Созревание Т -клеток начинается в костном мозге, где образуются протимоциты, которые затем мигрируют в тимус (вилочковую железу) – орган, расположенный в грудной клетке за грудиной. Там они дифференцируются в Т -лимфоциты – весьма неоднородную популяцию клеток иммунной системы, выполняющих различные функции. Т -лимфоциты составляют большинство лимфоцитов крови, на их долю приходится 80 % и более. Главная функция – участие в клеточном и гуморальном иммунитете. Они синтезируют факторы активации макрофагов, факторы роста B -клеток и интерфероны. Есть среди Т -клеток индукторные (хелперные) клетки, которые стимулируют образование B -клетками антител. Есть и клетки-супрессоры, которые подавляют функции B -клеток и синтезируют фактор роста Т -клеток – интерлейкин-2 (один из лимфокинов). NK -клетки отличаются от B - и Т -клеток тем, что у них нет поверхностных детерминант. Некоторые из них служат «естественными киллерами»,т. е. убивают раковые клетки и клетки, зараженные вирусом.

Тромбоциты (красные кровяные пластинки) представляют собой бесцветные безъядерные тельца сферической, овальной или палочкообразной формы диаметром 2–4 мкм. В норме содержание тромбоцитов в периферической крови составляет 200000-400000 на 1 мм3. Продолжительность их жизни – 8–10 дней. Тромбоциты играют ключевую роль в свертывании крови. Кроме того, в последнее время отмечено участие тромбоцитов в аллергических реакциях и восстановлении целостности сосудов.

Осмотическое давление крови обеспечивается за счет концентрации в крови осмотически активных веществ, т. е. это разность давлений между электролитами и неэлектролитами. Осмотическое давление относится к жестким константам, его величина 7,3–8,1 атм. Электролиты создают до 90–96 % всей величины осмотического давления, так как электролиты имеют низкую молекулярную массу и создают высокую молекулярную концентрацию. Неэлектролиты составляют 4—10 % величины осмотического давления и обладают высокой молекулярной массой, поэтому создают низкую осмотическую концентрацию. К ним относятся глюкоза, липиды, белки плазмы крови. Осмотическое давление, создаваемое белками, называется онкотическим. С его помощью форменные элементы поддерживаются во взвешенном состоянии в кровеносном русле.

В норме рН крови соответствует 7,36, т. е. реакция слабоосновная. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а венозной — 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные отклонения рН сопровождаются тяжелейшими последствиями для организма.

Скорость оседания эритроцитов (СОЭ). Эритроциты обладают наибольшим удельным весом и следовательно первые оседают. На этом основано клиническое СОЭ. При заболеваниях СОЭ увеличивается.

Понятие «эритрон» введено английским терапевтом Каслом для обозначения массы эритроцитов, находящихся в циркулирующей крови, в кровяных депо и костном мозге. Принципиальная разница между эритроном и другими тканями организма заключается в том, что разрушение эритроцитов осуществляется преимущественно мак­рофагами за счет процесса, получившего наименование «эритрофагоцитоз». Образующиеся при этом продукты разрушения и в первую очередь железо используются на построение новых клеток. Эритрон является замкнутой системой, в которой в условиях нормы количество разрушающихся эритроцитов соответствует числу вновь образовавшихся.

Коагуляционный гемостаз. Свертывание крови или гемокоагуляция – это важная защитная реакция, направленная на сохранение крови в сосудистой системе и предотвращающая гибель организма при травме сосудов. Основные положения ферментативной теории разработаны Шмидтом. В остановке кровотечения участвуют сосуды, ткани, окружающие сосуды, физиологические активные вещества плазмы, форменные элементы крови – главная роль принадлежит тромбоцитам. Всем этим управляет нейрогуморальный регуляторный механизм. Плазменные факторы крови – это физиологически активные вещества, принимающие участие в свертывании крови и находящиеся в плазме. Обозначаются плазменные факторы римскими цифрами в порядке их хронологии открытия. Плазменные факторы:

I. фибриноген (2-4 г\л);

II. протромбин;

III. тканевой тромбопластин;

IV. ионы кальция;

V. проакцелирин;

VI. (проконвертин);

VII. антигемофильный фактор А;

VIII. фактор Виллебранда;

IX. антигемофильный глобулин В (фактор Кристмаса);

X. фактор Стюарта-Прауэра;

XI. антигемофильный глобулин С (плазменный предшественник протромбиназы);

XII. фактор Хагемана (фактор контакта);

XIII.фибриностабилизирующий фактор;

XIV. фактор Флетчера (прокаллекреин);

XV. фактор Фитцжеральда (кининоген).

Многие плазменные факторы образуются в печени. При недостатке какого-либо фактора может наблюдаться патологическая кровоточивость. Некоторые заболевания носят наследственный характер: гемофилия.

Тромбоцитарные факторы – вещества, которые находятся в тромбоцитах, называют пластинчатыми факторами. Обозначение арабскими цифрами. Важные:

ПФ3 – тромбоцитарный тромбопластин – это липидно-белковый комплекс, на котором происходит гемокоагуляция.

ПФ4 - антигепариновый фактор.

ПФ5 – тромбоциты способны к адгезии и агрегации

ПФ10 – серотонин.

 

Система кровообращения, функция сердца и ее регуляция. Функциональная классификация кровеносных сосудов. Факторы и параметры движения крови по артериям и венам. Система поддержания величины артериального давления

Сердечно-сосудистая система — система органов, которая обеспечивает циркуляцию крови в организме человека и животных. Благодаря циркуляции крови кислород, а также питательные вещества доставляются органам и тканям тела, а углекислый газ, другие продукты метаболизма и отходы жизнедеятельности выводятся.

В состав сердечно-сосудистой системы входит сердце — орган, который заставляет кровь двигаться, нагнетая её в кровеносные сосуды — полые трубки различного калибра, по которым она циркулирует.

Сердце — полый мышечный орган, который последовательностью сокращений и расслаблений перекачивает кровь по сосудам. В зависимости от биологического вида внутри может разделяться перегородками на две, три или четыре камеры. У млекопитающих и птиц сердце четырёхкамерное. При этом различают (по току крови): правое предсердие, правый желудочек, левое предсердие и левый желудочек.

Стенка имеет три слоя: внутренний — эндокард (его выросты образуют клапаны), средний — миокард (сердечная мышца, сокращение происходит не произвольно, предсердия и желудочки не соединяются между собой), наружный — эпикард (покрывает поверхность сердца, служит внутренним листком околосердечной серозной оболочки — перикарда).

Сердце чаще всего находится в грудном сегменте тела.

Во время работы сердца возникают звуки — тоны:

1. Систолический — низкий, продолжительный (колебание створок, захлопываются двух- и трёх- створчатые клапаны, колебание натягивают сухожильные нити).

2. Диастолический — короткий, высокий (захлопывают полулунные клапаны аорты и лёгочного ствола).

Сердце сокращается ритмично в условиях покоя с частотой — 60—70 ударов в минуту. Частота ниже 60 — брадикардия, выше 90 — тахикардия. Сокращение мышц сердца —систола, расслабление — диастола. Полный цикл сердечной деятельности — 0,8 секунд. Сокращение предсердий — 0,1 секунд, сокращение желудочков — 0,3 секунд, пауза — 0,4 секунд.

Там, где сосудистая система замкнута, она образует круг кровообращения. Сердечно-сосудистая система человека образует два круга кровообращения: большой и малый.

Малый круг кровообращения начинается в правом желудочке и продолжается в легочный ствол, переходит в легкие, где осуществляется газообмен, затем по легочным венам кровь поступает в левое предсердие. Кровь обогащается кислородом. Из левого предсердия артериальная кровь, насыщенная кислородом, поступает в левый желудочек, откуда начинается большой круг. Кровь, содержащая кислород, по аорте направляется по менее крупным сосудам к тканям и органам, где осуществляется газообмен. В результате по системе полых вен (верхней и нижней), которые впадают в правое предсердие, течет венозная кровь с низким содержанием кислорода.

Особенностью является тот факт, что в большом круге артериальная кровь движется по артериям, а венозная – по венам. В малом круге, наоборот, по артериям течет венозная кровь, а по венам – артериальная.

Кровено́сные сосу́ды — эластичные трубчатые образования в теле животных и человека, по которым осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, артериальным капиллярам, и от них к сердцу — по венозным капиллярам, венулам и венам.

Среди сосудов кровеносной системы различают артерии, артериолы, капилляры, венулы, вены и артериоло-венозные анастомозы; сосуды системы микроциркуляторного русла осуществляют взаимосвязь между артериями и венами. Сосуды разных типов отличаются не только по своей толщине, но и по тканевому составу и функциональным особенностям.

· Артерии — сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться, в зависимости от количества перекачиваемой сердцем крови.

· Артериолы — мелкие артерии, по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление.

· Капилляры — это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Через стенку капилляров осуществляется отдача питательных веществ и кислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь.

· Венулы — мелкие кровеносные сосуды, обеспечивающие в большом круге отток обедненной кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены.

· Вены — это сосуды, по которым кровь движется к сердцу. Стенки вен менее толстые, чем стенки артерий и содержат соответственно меньше мышечных волокон и эластических элементов.

· Артериальное давление — один из важнейших параметров, характеризующих работу кровеносной системы. Давление крови определяется объёмом крови, перекачиваемым в единицу времени сердцем и сопротивлением сосудистого русла. Поскольку кровь движется под влиянием градиента давления в сосудах, создаваемого сердцем, то наибольшее давление крови будет на выходе крови из сердца (в левом желудочке), несколько меньшее давление будет в артериях, ещё более низкое в капиллярах, а самое низкое в венах и на входе сердца (в правом предсердии). Наибольшее падение давления крови происходит в мелких сосудах: артериолах, капиллярах и венулах.

· Верхнее число — систолическое артериальное давление, показывает давление в артериях в момент, когда сердце сжимается и выталкивает кровь в артерии, оно зависит от силы сокращения сердца, сопротивления, которое оказывают стенки кровеносных сосудов, и числа сокращений в единицу времени.

· Нижнее число — диастолическое артериальное давление, показывает давление в артериях в момент расслабления сердечной мышцы. Это минимальное давление в артериях, оно отражает сопротивление периферических сосудов.

· Типичное значение артериального кровяного давления здорового человека (систолическое/диастолическое) = 120 и 80 мм рт. ст., давление в крупных венах на несколько мм. рт. ст. ниже нуля (ниже атмосферного). Разница между систолическим артериальным давлением и диастолическим (пульсовое давление) в норме составляет 30—40 мм рт. ст.

 

Система дыхания - строение, значение. Биологическая роль кислорода. Внешнее дыхание: понятие, значение. Диффузия углекислого газа и кислорода через аэрогематический барьер. Транспорт газов кровью. Современные представления о локализации, структуре и функциях дыхательного центра. Функциональная система поддержания постоянства параметров газового гомеостаза.

Дыха́тельная систе́ма челове́ка — совокупность органов, обеспечивающих функцию внешнего дыхания человека (газообмен между вдыхаемым атмосферным воздухом и циркулирующей по малому кругу кровообращения кровью). Газообмен осуществляется в альвеолах лёгких, и в норме направлен на захват из вдыхаемого воздуха кислорода и выделение во внешнюю среду образованного в организме углекислого газа. Кроме того, дыхательная система участвует в таких важных функциях, как терморегуляция, голосообразование, обоняние, увлажнение вдыхаемого воздуха. Лёгочная ткань также играет важную роль в таких процессах как: синтез гормонов, водно-солевой и липидный обмен. Дыхательная система также обеспечивает механическую и иммунную защиту от факторов внешней среды.

Процесс дыхания состоит из трех основных звеньев – внешнего дыхания, транспорта газов кровью, внутреннего дыхания.

Внешнее дыхание представляет собой обмен газов между организмом и внешней средой. Оно осуществляется с помощью двух процессов – легочного дыхания и дыхания через кожу. Легочное дыхание заключается в обмене газов между альвеолярным воздухом и окружающей средой и между альвеолярным воздухом и капиллярами. При газообмене с внешней средой поступает воздух, содержащий 21 % кислорода и 0,03—0,04 % углекислого газа, а выдыхаемый воздух содержит 16 % кислорода и 4 % углекислого газа. Кислород поступает из атмосферного воздуха в альвеолярный, а углекислый газ выделяется в обратном направлении. В результате внешнего дыхания от легких оттекает артериальная кровь, богатая кислородом и бедная углекислым газом.

Внешнее дыхание человека включает две стадии:

1. вентиляция альвеол,

2. диффузия газов из альвеол в кровь и обратно.

Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.

Транспорт газов кровью осуществляется в основном в виде комплексов:

1) кислород образует соединение с гемоглобином,

2) в виде физического растворения транспортируется 15–20 мл кислорода;

3) углекислый газ переносится в форме бикарбонатов Na и K, причем бикарбонат K находится внутри эритроцитов, а бикарбонат Na – в плазме крови;

4) углекислый газ транспортируется вместе с молекулой гемоглобина.

Внутреннее дыхание состоит из обмена газов между капиллярами большого круга кровообращения и тканью и внутритканевого дыхания. В результате происходит утилизация кислорода для окислительных процессов.

Основной функцией кислорода является его участие как окислителя в окислительно-восстановительных реакциях в организме. Благодаря наличию кислорода, организмы всех животных способны утилизировать (фактически «сжигать») различные вещества (углеводы, жиры, белки) с извлечением определенной энергии «сгорания» для собственных нужд. В покое организм взрослого человека потребляет 1,8-2,4 г кислорода в минуту. Кислород воздуха служит конечным акцептором водорода при дыхании.

Кислород в процессе диффузии проходит из просвета альвеолы в кровеносные капилляры через аэрогематический барьер, плазму крови и мембрану эритроцита. Общее расстояние не превышает 5 мкм. CO2 диффундирует в обратном направлении. Диффузия осуществляется благодаря градиенту парциальных давлений О2 и СО2, в альвеолярном воздухе и в крови. Сразу после диффузии в эритроциты О2, связывается с гемоглобином, в результате чего образуется окси-гемоглобин, который диффундирует к центру эритроцита, при этом валентность железа не меняется. 1 г гемоглобина связывает 1,34 мл О2. CO2, в эритроцитах также связан с гемоглобином. СО2, диффундирует из эритроцитов только после его освобождения из химической связи.

Дыхательные пути. Различают верхние и нижние дыхательные пути.

Система верхних дыхательных путей состоит из полости носа, носоглотки и ротоглотки, а также частично ротовой полости, так как она тоже может быть использована для дыхания. Система нижних дыхательных путей состоит из гортани, трахеи, бронхов.

Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц. В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400—500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. После максимального выдоха в лёгких остаётся воздух, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3 000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких. Дыхание — одна из немногих функций организма, которая может контролироваться сознательно и неосознанно.

Газообмен — обмен газов между организмом и внешней средой, т. е. дыхание. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями. Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются CO2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы.

Газообмен у холоднокровных понижается с понижением температуры тела. Такая же зависимость обнаружена и у теплокровных при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается. При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3–6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне.

Газообмен у человека происходит в альвеолах легких и в тканях тела. Функция внешнего дыхания обеспечивается как дыхательной системой, так и системой кровообращения. Атмосферный воздух попадает в лёгкие из носоглотки (где предварительно очищается от механических примесей, увлажняется и согревается) через гортань и трахеобронхиальное дерево (трахею, главные бронхи, долевые бронхи, сегментарные бронхи, дольковые бронхи, бронхиолы и альвеолярные ходы) попадает в лёгочные альвеолы. Смена воздуха обеспечивается дыхательной мускулатурой, осуществляющей вдох (набор воздуха в лёгкие) и выдох (удаление воздуха из лёгких). Через мембрану альвеол осуществляется газообмен между атмосферным воздухом и циркулирующей кровью. Далее кровь, обогащённая кислородом возвращается в сердце, откуда по артериям разносится ко всем органам и тканям организма. По мере удаления от сердца и деления, калибр артерий постепенно уменьшается до артериол и капилляров, через мембрану которых происходит газообмен с тканями и органами.

Процесс дыхания регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, которые располагаются в нескольких отделах мозга и объединяются под названием дыхательный центр. Дыхательный центр управляет 2-мя основными функциями: двигательная и гомеостатическая. В регуляции участвуют дыхат.нейроны, активность которых вызывает инспирацию (вдох) и экспирацию (выдох). Следовательно, нейроны инспираторные и экспираторные. Они делятся на ранние и поздние. Существуют защитные дыхательные рефлексы. К ним относятся чихание и кашель. Чихание – раздражение рецепторов слизистой оболочки полости носа, вызывает сужение бронхов, брадикардию, и снижение сердечного выброса, также сужаются просветы сосудов, сосуды кожи и мышц. Эти механические раздражения вызывают сильный выдох. В регуляции этого процесса участвует тройничный нерв. Кашель – возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. Регуляция происходит с помощью блуждающего нерва.

Функции системы пищеварения. Полостное и пристеночное пищеварение, их характеристика. Функциональная система поддержания постоянства концентрации питательных веществ во внутренней среде организма. Система выделения. Функции почек.

Система пищеварения – сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям существования. Система пищеварения включает: весь желудочно-кишечный тракт; все пищеварительные железы; механизмы регуляции.

Желудочно-кишечный тракт начинается с ротовой полости, продолжается пищеводом, желудком и заканчивается кишечником. Железы расположены на протяжении всей пищеварительной трубки и выделяют в просвет органов секреты.

Все функции делятся на пищеварительные и непищеварительные. К пищеварительным относятся:

1) секреторная активность пищеварительных желез (выработка железистыми клетками пищеварительных соков);

2) моторная деятельность желудочно-кишечного тракта (осуществляется благодаря наличию гладкомышечных клеток и скелетных мышц, обеспечивающих механическую обработку и продвижение пищи);

3) всасывательная функция (поступление конечных продуктов в кровь и лимфу).

Непищеварительные функции: эндокринная;экскреторная;защитная;деятельность микрофлоры.

Эндокринная функция осуществляется за счет наличия в составе органов желудочно-кишечного тракта отдельных клеток, вырабатывающих гормоны – инкреты.Экскреторная роль заключается в выделении непереваренных продуктов пищи, образующихся в ходе процессов метаболизма.Защитная деятельность обусловлена наличием неспецифической резистентности организма, которая обеспечивается благодаря присутствию макрофагов и лизоцима секретов, а также за счет приобретенного иммунитета. Деятельность микрофлоры связана с присутствием в составе аэробных бактерий (10 %) и анаэробных (90 %). Они расщепляют растительные волокна (целлюлозу, гемицеллюлозу и др.) до жирных кислот, участвуют в синтезе витаминов К и группы В, тормозят процессы гниения и брожения в тонком кишечнике, стимулируют иммунную систему организма.

Таким образом, система пищеварения обеспечивает механическую и химическую обработку пищи, осуществляет всасывание конечных продуктов распада в кровь и лимфу, транспортирует к клеткам и тканям питательные вещества, выполняет энергетическую и пластическую функции.

Типы пищеварения. Выделяют три типа пищеварения:внеклеточное;внутриклеточное;мембранное.Внеклеточное пищеварение происходит за пределами клетки, которая синтезирует ферменты. В свою очередь, оно делится на полостное и внеполостное. При полостном пищеварении ферменты действуют на расстоянии, но в определенной полости (например, это выделение секрета слюнными железами в ротовую полость). Внеполостное осуществляется за пределами организма, в котором образуются ферменты (например, микробная клетка выделяет секрет в окружающую среду).

Мембранное (пристеночное) пищеварение осуществляется на границе между внеклеточным и внутриклеточным пищеварением, т. е. на мембране. У человека осуществляется в тонком кишечнике, поскольку там имеется щеточная кайма. Она образована микроворсинками. Особенности мембранного пищеварения:

1) осуществляется за счет ферментов, имеющих двойное происхождение (синтезируются клетками и абсорбируются содержимого кишечника);

2) ферменты фиксируются на клеточной мембране таким образом, чтобы активный центр был направлен в полость;

3) происходит только в стерильных условиях;

4) является заключительным этапом в обработке пищи;

5) сближает процесс расщепления и всасывания за счет того, что конечные продукты переносятся на транспортных белках.

В организме человека полостное пищеварение обеспечивает расщепление 20–50 % пищи, а мембранное – 50–80 %.

Питательные вещества. Жизнедеятельность любого организма, в том числе и человека, невозможна без постоянного поступления энергии из внешней среды. Такой энергией для человека является потребляемая пища, содержащая питательные вещества — белки, жиры и углеводы. Питательные вещества — это жизненно необходимые составные части пищи, используемые организмом как пластический материал для построения живого вещества клеток и служащие источником энергии, необходимой для его жизнедеятельности. Организму нужны также минеральные соли, вода, витамины. Все эти вещества также поступают с пищей.

Единственным источником питательных веществ, за счет которого поддерживается гомеостаз - экзогенное питание. Внутренняя среда организма, которая должна быть относительно постоянна, начинается не с крови, а с кишечника. Содержимое кишечника (химус) достаточно постоянен. В тонкой кишке наряду с потоком веществ в кровь постоянно существует и противоположный - из крови в полость кишечника.

Нарушение постоянства состава химуса, обусловленные длительным несбалансированным питанием или расстройством функций пищеварительных органов, вызывают расстройства обменных процессов, ведут к нарушению постоянства состава внутренней среды и в конечном итоге к гибели организма.

Выделительная, или экскреторная система — совокупность органов, выводящих из организма избыток воды, продукты обмена веществ, соли, а также ядовитые вещества, попавшие в организм извне или образовавшиеся в нём. Органы выделения: почки, легкие, кожа, печень, ЖКТ. Главное их назначение – поддержание постоянства внутренней среды.


Дата добавления: 2015-05-19 | Просмотры: 1398 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.024 сек.)