Химические свойства альдегидов и кетонов
Химические свойства определяются особенностями строения карбонильной группы >C=O, обладающей полярностью – электронная плотность между атомами С и О распределена неравномерно, сдвинута к более электроотрицательному атому О. В результате карбонильная группа приобретает повышенную реакционную способность, что проявляется в разнообразных реакциях присоединения по двойной связи.
Кроме того, за счет смещения электронной плотности атомы водорода расположенные в α-положении относительно карбонильной группы приобретают подвижность, это свойство называется СН-кислотность.
Во всех случаях кетоны менее реакционноспособны, чем альдегиды, в частности, из-за пространственных затруднений, создаваемых двумя органическими группами R.
I. Присоединение по двойной связи С=О, взаимодействие с О-, N-, S-нуклеофилами
1) При взаимодействии со спиртами альдегиды образуют полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода. Полуацетали могут далее реагировать с еще одной молекулой спирта, образуя полные ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы. Реакцию катализируют кислоты и основания. В случае кетонов присоединение спиртов к двойной связи в С=О затруднено.
2) Сходным образом альдегиды и кетоны реагируют с синильной кислотой HCN, образуя гидроксинитрилы – соединения, содержащие у одного атома углерода ОН- и CN-группу. Реакция удобна тем, что позволяет увеличивать углеродную цепь (возникает новая С-С- связь). Прежде чем изобразить реакцию, рассмотрим строение синильной кислоты.
гидроксинитрил
3) Точно так же (раскрывая двойную связь С=О) реагируют с альдегидами и кетонами аммиак и амины, продукты присоединения неустойчивы и конденсируются с выделением воды и образованием двойной связи C=N. Эта реакция позволяет различать альдегиды и кетоны.
В случае взаимодействия альдегида и аммиака получаются имины, а из аминов образуются так называемые основания Шиффа – соединения, содержащие фрагмент >C=NR.
Кетоны с аммиаком подобных соединений не образуют. Они реагируют более медленно и сложно:
4) Присоединение гидросульфита натрия (NaHSO3) приводит к образованию гидросульфидных производных альдегидов и кетонов, которые легко разлагаются водой. α-Гидроксилалкансульфонаты не растворяются в органических соединениях, они появляются бесцветных кристаллов. Эта реакция является качественной.
5) Реакции с гидроксиламином осуществляются с выделением воды. Продуктом взаимодействия альдегида или кетона с гидроксиламином является оксим. Такие соединения представляют интерес для органического синтеза.
6) Взаимодействие с гидразином протекает с образованием различных продуктов и зависит это от соотношения компонентов. Реакция 1 моль карбонильного соединения с гидразином завершается получением гидразона, а 2 моль – получением азина.
7) Альдегиды и кетоны реагируют и с галогеннуклеофилами. В качестве реагентов применяют галогениды фосфора и серы, но чаще всего – пентахлорид фосфора.
8) Присоединение реактивов Гриньяра к альдегидам и кетонам походит с образованием смешанных алкоголятов, которые легко гидролизуются до спиртов (подробно эти реакции изучены в лекции «Спирты»).
II. Реакции с участием атомов водорода расположенных при α-углеродном атоме.
1) Подвижность протонов, расположенных в α-положении относительно карбонильной группы дает возможность реагировать с галогенами (Cl2, Br2, I2). Реакции ускоряются в присутствии и кислот и оснований.
Роль катализатора заключается в ускорении процесса енолизации (суть работы катализатора рассмотрим ниже на примере реакции конденсации).
2) Реакции конденсации. Для альдегидов и кетонов возможна конденсация, проходящая между двумя молекулами одного и того же соединения. При такой конденсации альдегидов двойная связь одной из молекул раскрывается, образуется соединение, содержащее одновременно альдегидную и ОН-группу, называемое альдолем (альдегидоспирт).
Протекающую конденсацию называют, соответственно, альдольной, эту реакцию катализируют основания. Полученный альдоль может далее конденсироваться с образованием двойной связи С=С и выделением конденсационной воды. В итоге получается ненасыщенный альдегид (кротоновой альдегид). Такую конденсацию называют кротоновой по названию первого соединения в ряду ненасыщенных альдегидов.
Кетоны также способны участвовать в альдольной конденсации, а вторая стадия – кротоновая конденсация, для них затруднена.
В альдольной конденсации могут совместно участвовать молекулы различных альдегидов, а также одновременно альдегид и кетон, во всех случаях происходит удлинение углеродной цепи.
Рассмотрим подробнее механизм реакции:
Гидроксил-ион является инициатором реакции, он отрывает протон от метильной группы альдегида (стадия I). Затем метиленовая компонента атакует карбонильную компоненту – вторую молекулу карбонильного соединения (стадия II). Продукты альдольной конденсации в присутствии оснований легко отщепляют воду (стадия III).
2) Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома О (в виде воды), а метиленовая группа СН2 или замещенная метиленовая группа (СНR либо СR2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол.
Дата добавления: 2015-09-03 | Просмотры: 1227 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 |
|