АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Доходность. Это та сумма, которую вы зарабатываете на активах
2. Безрисковая Доходность. Это та сумма денег, которую вы можете ожидать заработать на активах, которые в экономическом анализе классифицируются как «безрисковые», на сумму капитала, эквивалентную той, с которой вы собираетесь выйти на тот рынок, где работаете. Во всех, за малым исключением, ситуациях соответствующей ставкой доходности здесь будет ставка по финансовым инструментам Казначейства США. При вычислении коэффициента Шарпа безрисковая доходность вычитается из общего дохода портфеля, чтобы обособить ту долю показателя, которая привязана к предположению о подверженности рыночным рискам. Одним из довольно изящных результатов здесь является то, что тот, кто берет капитал и инвестирует его в казначейские ценные бумаги, зарабатывает в точности безрисковую процентную ставку, и, следовательно, коэффициент Шарпа в этом случае становится равным нулю, а у тех портфелей, которые не могут принести даже такого скромного уровня доходности, коэффициент Шарпа будет отрицательным. Поэтому положительным коэффициент Шарпа становится только в том случае, когда достигнутые показатели выше минимальной ставки по государственным ценным бумагам - то есть, в принципе, предполагается, что эти показатели связаны с какой-то сопряженной с риском рыночной деятельностью, и тогда можно говорить о положительной доходности с поправкой на риск.
3. Стандартное отклонение Доходности. Этот наш с вами старый друг-приятель: мы-то думали, что разбили его в пух и прах, - ан нет; вот он, тут как тут, - восстал из пепла, чтобы поучаствовать в качестве компонента риска в вычислении доходности с поправкой на риск. Заметьте себе, что тут чрезвычайно важно выразить эту статистическую величину для соответствующего промежутка времени - в идеале, как уже было сказано выше, для одного года. Вследствие специфики этого расчета (когда эта цифра изменяется в непосредственной зависимости от квадратного корня от количества частных значений наблюдений), для этого необходимо или умножение, или деления квадратного корня из количества наблюдений. Например, предположим, что у вас есть ежедневные данные за год, которые определяют дневное стандартное отклонение, скажем, в $10,000, или в 1% (пусть сумма капитала равна $1 миллиону). Чтобы найти стандартное отклонение в годовом исчислении, надо умножить эту цифру на квадратный корень из количества операционных дней в году. Если зачеркнуть в календаре выходные и праздничные дни, получится примерно 250 плюс-минус один-два дня, и квадратный корень из этого числа будет равен примерно 15.9. Следовательно, если дневное стандартное отклонение равно $10,000, или 1%, то стандартное отклонение в годовом исчислении будет равно примерно $159,000, или 15.9%.
В формуле расчета коэффициента Шарпа такое нормирование по временным промежуткам необходимо производить для того, чтобы полученные результаты имели смысл. Заметьте, что эта формула допускает корректировку с учетом таких факторов, как то, что набор данных может быть неполным (например, данные за полгода), и то, что периоды времени не обязательно будут равняться одному дню. Однако в своих объяснениях этих загадочных явлений я буду полагаться на мнение своих друзей-профессионалов в области статистики.
К этому моменту вы уже, наверное, бросились вычислять свой коэффициент Шарпа, и вам интересно, следует ли вам стыдиться или, наоборот, гордиться тем результатом, который у вас получился. Следуя простому эмпирическому правилу, я думаю, что почти всегда надо стремиться к тому, чтобы коэффициент Шарпа, рассчитанный по вышеописанному методу, был больше или равен единице. Например, если предположить, что безрисковая процентная ставка равна 5%, а стандартное отклонение дохода в годовом исчислении составляет 15%, то, чтобы достичь этого порога, для такого портфеля нужно было бы, чтобы доходность была не менее 20%:
(Доходность 20% — безрисковая процентная ставка 5%) / стандартное отклонение доходности 15% = 1.0
Конечно, если коэффициент Шарпа меньше этой базовой величины, то все равно за длительные промежутки времени можно добиться довольно высоких финансовых целей; однако привлекательность таких доходов с точки зрения поправки на риск, естественно, снижается. В таких случаях поставщик капитала (будь то вы сами или какой-то другой экономический субъект), совершенно обоснованно придет к выводу, что его деньгам можно найти более интересное применение. Бывает другая крайность - я знаю случаи, когда коэффициент Шарпа некоторых портфелей достигал 5.0, 10.0 или даже больших значений на протяжении длительных периодов времени. Такие - довольно редкие - исключения могут быть свидетельством или необычайного рыночного подъема, или же того, что в вычислении стандартного отклонения не были в достаточной мере учтены какие-то риски; я бы советовал вам подходить к оценке подобных ситуаций с большой осторожностью.
Все это подводит нас к последнему элементу нашего разговора о коэффициенте Шарпа - а именно, к его ограничениям. В значительной степени они зависят от точности вычисления стандартного отклонения как параметра, представляющего степень подверженности рискам, а также от возможности применения распределений исторической доходности и волатильности как средств прогнозирования будущих показателей. Как было показано выше, ограничения, связанные с вычислением стандартного отклонения, обусловлены предположением, что доходность портфеля имеет нормальное распределение, а так бывает не всегда. Кроме того, модели волатильности могут и не повторяться — в особенности в тех случаях, когда волатильность вычисляется за более короткие промежутки времени.
Чтобы проиллюстрировать тот тип проблем, которые могут быть связаны с этими ограничениями, рассмотрим портфель, в котором не происходит ничего, кроме продажи опционов с большим проигрышем, срок исполнения которых уже очень близок. Поскольку эти опционы окупаются при любых исходах, кроме самых маловероятных, то портфельные менеджеры, использующие такие стратегии, могут добиваться стабильной доходности при низкой волатильности на протяжении длительных периодов времени — зачастую годами. Однако соответствующий коэффициент Шарпа маскирует тот факт, что время от времени в результате каких-нибудь резких изменений на рынке этот портфель будет терпеть существенные убытки. Когда такое происходит, мы видим и ограничения а при расчете подверженности рискам, и риск, связанный с использованием исторической доходности как средства для предсказания будущих рисков.
В статистике медиана определяется как такое значение наблюдения в наборе данных, по отношению к которому половина частных значений наблюдений больше его, а половина - меньше. В полностью симметричных распределениях среднее значение и медиана совпадают (или почти совпадают). Однако мой опыт показывает, что наборы данных, отражающие значения показателей, редко имеют абсолютно симметричные распределения.
Поэтому я предлагаю вам сравнивать среднее значение и медиану наблюдений прибылей/убытков в пашем портфеле для различных временных рамок. Когда среднее значение существенно превосходит медиану, это, скорее всего, означает, что благодаря нескольким вашим особенно прибыльным дням среднее значение оказалось выше. Аналогично, если медиана значительно больше среднего значения, то, вероятнее всего, ряд очень неудачных дней сильно повлиял на среднее значение, и оно оказалось более низким.
В любом случае, если медиана и среднее значение очень отличаются друг от друга по величине, вам предоставляется еще одна возможность поисследовать эту динамику и связанное с ней влияние вашей деятельности на хвостах распределения показателей прибылей/убытков.
Дата добавления: 2015-09-18 | Просмотры: 490 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 |
|