АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Биосинтез липидов

Прочитайте:
  1. Анаболизм прокариот. Биосинтез углеводов
  2. Б. Биосинтез гема
  3. Биосинтез аминокислот
  4. Биосинтез аминокислот и белков
  5. Биосинтез белка. Аппарат трансляции. Локализация в клетке и этапы этого процесса. Энергетическая характеристика процесса биосинтеза белка.
  6. Биосинтез белка. Этапы трансляции. Посттрансляционная модификация белка.
  7. Биосинтез белков - трансляция
  8. Биосинтез ДНК - репликация
  9. Биосинтез липидов

Липиды в клетке прокариот представлены химическими соединениями различной природы (триглицериды, фосфолипиды, гликолипиды, воска), выполняющими разные функции. Они входят в состав клеточных мембран, являются компонентами пигментных систем и транспорта электронов, выполняют роль запасных веществ. Исходными продуктами для биосинткза липидов служат жирные кислоты, спирты, углеводы, фосфаты. Пути биосинтеза липидов сложны и протекают с затратой значительного количества энергии при участии многочисленных ферментов. Наиболее важны для жизнедеятельности клетки триглицериды и фосфолипиды.

Биосинтез жирных кислот с четным числом атомов углерода происходит в результате последовательного присоединения к молекуле ацетил-КоА двууглеродного остатка от малонил-КоА. Так, при биосинтезе пальмитиновой кислоты 1 молекула ацетил-КоА конденсируется с 7 молекулами малонил-КоА:

 

Ацетил-КоА + 7 малонил-КоА + 14 НАД(Ф)Н2

СН3(СН2)14СООН +7 СО2 + 8КоА + 14НАД(Ф)+ +6Н2О

 

Важную роль в реакциях биосинтеза жирных кислот играет ацилпереносящий белок (АПБ) – переносчик ацильных групп. Последовательное наращивание двууглеродных остатков через ряд промежуточных продуктов приводит к образованию С1618-соединений. В клетках прокариот компонентами липидов могут являться ненасыщенные жирные кислоты, содержащие одну двойную связь. Образование двойной связи у аэробных микроорганизмов происходит при участии кислорода и специфического фермента десатуразы. Например, пальмитоолеиновая кислота образуется из пальмитил-КоА:

 

Пальмитил-КоА + ½ О2 + НАД(Ф)Н2 пальмитоолеил-КоА + Н2О +НАД(Ф) +

 

У анаэробных микроорганизмов образование двойной связи происходит на ранней стадии биосинтеза молекулы жирной кислоты в результате реакции дегидратации.

Исходным субстратом для синтеза фосфолипидов служит фосфодиоксиацетон – промежуточное соединение гликолитического цикла. Восстановление его приводит к образованию 3-фосфоглицерина, который, соединяясь с двумя остатками жирных кислот, продуцирует фосфатидную кислоту. Присоединение к ее фосфатной группе серина, инозина, этаноламина, холина заканчивается синтезом фосфатидилсерина, фосфатидилинозита, фосфатидилхолина, фосфатидилэтаноламина.

Биосинтез органических соединений подробно изучается в курсе биохимии.

 


Дата добавления: 2015-09-27 | Просмотры: 779 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)