АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Катаболизм прокариот

Прочитайте:
  1. А. Катаболизм гема
  2. Анаболизм прокариот. Биосинтез углеводов
  3. В. Катаболизм билирубин-диглюкуронида
  4. Генетический код. Экспрессия генов и ее этапы. Различия между строением генов у прокариот и эукариот.
  5. Грамположительных и грамотрицательных прокариот
  6. КАТАБОЛИЗМ АМИНОКИСЛОТ.
  7. Катаболизм гема.
  8. Катаболизм углеводов
  9. Метаболизм прокариот. Анаболизм. Катаболизм

Жизнь прокариот, как и любых других организмов, определяется наличием энергии. Из всех внешних источников энергии для живых организмов доступны только два вида: электромагнитная и химическая энергия окисления восстановленных соединений. Растительные организмы для жизнедеятельности используют как электромагнитную энергию, так и химическую энергию дыхания. Животные получают энергию исключительно в процессе дыхания.

Для прокариот характерны весьма различные способы получения энергии. Так, наиболее древняя группа анаэробных прокариот довольствуется химической энергией процессов брожения. Большинство прокариот получают энергию в реакциях аэробного окисления самых различных органических соединений. Однако среди них имеются анаэробы, способные переходить от аэробного окисления органических веществ субстрата к анаэробному нитратному или сульфатному дыханию. Высокоспециализированные группы хемолитотрофных микроорганизмов используют химическую энергию реакции аэробного окисления неорганических веществ (Н2, NH4+, NO2-, H2S, Fe2+ и др.). Наконец, сине-зеленые водоросли и фотосинтезирующие бактерии утилизируют как электромагнитную энергию, так и химическую энергию реакций окисления различных органических и неорганических восстановленных соединений.

Энергия, получаемая прокариотами, аккумулируется клеткой в высокоэнергетических соединениях с фосфатной связью: производные фосфорной кислоты – аденозинтрифосфат (АТФ), уридинтрифосфат (УТФ) и др., а также с тиоэфирной связью: производные карбоновых кислот – ацетил-коэнзим А (ацетил-К0А). Ключевым соединением в реакциях переноса энергии в процессах метаболизма является аденозинтрифосфат (АТФ).

При отщеплении одного из остатков фосфорной кислоты от молекулы АТФ с образованием АДФ освобождается значительное количество энергии:

АТФ→ АДФ + Фн + 31,8 кДж/моль

И наоборот, присоединение фосфорной кислоты к АДФ в реакциях фосфорилирования с образованием АТФ сопровождается аккумуляцией энергии.

Цепь переноса электронов. ЦПЭ. Ферменты цепи переноса электронов. Отщепление и перенос водорода или электронов от окисляемого субстрата на конечный акцептор осуществляется через последовательную цепь дыхательных ферментов, получивших название цепи переноса электронов (ЦПЭ) или дыхательной цепи.

В клетках аэробных и анаэробных прокариот наиболее обширную группу дыхательных ферментов составляют дегидрогеназы, катализирующие дегидрирование субстратов. Коферментами дегидрогеназ выступают пиридиннуклеотиды – никотинамидаденинуклеотид (НАД) и флавопротеиды (ФП) – флавинадениндинуклеотид (ФАД) и флавинмононуклеотид (ФМН).

Вторую группу дыхательных ферментов составляют цитохромы b, c, a и a3, коферменты которых представлены железопорфиринами. Звено цитохромов осуществляет перенос электронов по дыхательной цепи от дегидрогеназ на конечный акцептор – молекулярный кислород либо на нитраты или сульфаты.

Помимо вышеуказанных групп дыхательных ферментов в мембранной системе прокариот обнаружены хиноны типа убихинона и менахинона.

Расположение ферментов в дыхательной цепи определяется их окислительно-восстановительным потенциалом. Чем ниже окислительно-восстановительный потенциал фермента, тем в большей степени он является восстановителем и тем ближе он расположен к субстрату. Порядок расположения ферментов в цепи переноса электронов приблизительно таков: НАД – дегидрогеназы→ ФАД – или ФМН – дегидрогеназы→ убихинон →цитохромы d→ c→ a→ a3.

В полной дыхательной цепи при переносе водорода и электронов между НАД-дегидрогеназой и конечным акцептором образуются три молекулы АТФ.

Разные группы прокариотных организмов характкризуются разным уровнем организации дыхательной цепи. Так, в клетках первично анаэробных хемоорганотрофных микроорганизмов, ведущих процессы брожения, обнаружены только НАД-зависимые дегидрогеназы. Наиболее полно дыхательная цепь сформирована у фотосинтезирующих прокариот. Все анаэробные и факультативно анаэробные микроорганизмы имеют более или менее полную систему ферментов электронного транспорта. Однако у разных физиологических групп микроорганизмов дыхательные цепи отличаются по составу промежуточных ферментов – переносчиков и терминальным цитохромом (цитохромоксидаза или редуктаза).


Дата добавления: 2015-09-27 | Просмотры: 862 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)