АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

B9 (повышенный уровень, время – 3 мин)

Прочитайте:
  1. A2 (базовый уровень, время – 2 мин)
  2. I. Родоразрешение:сроки, время, метод
  3. А) Для оценки функционального состояния щитовидной железы, иначе говоря, тиреоидной функции, в настоящее время применяются следующие методы.
  4. Активированное частичное (парциальное) тромбопластиновое время (АЧТВ)
  5. Алгоритм обследования больных с вирусной инфекцией во время беременности
  6. БЕЗОПАСНЫЕ И УДОБНЫЕ УПРАЖНЕНИЯ ВО ВРЕМЯ ГРУДНОГО ВСКАРМЛИВАНИЯ
  7. БЕОПАСНЫЙ СОВМЕСТНЫЙ СОН ВО ВРЕМЯ КОРМЛЕНИЯ ГРУДЬЮ
  8. Беременные, в настоящее время нуждающиеся в АРТ по состоянию здоровья.
  9. БЕССОННИЦА ВО ВРЕМЯ БЕРЕМЕННОСТИ

Тема: Графы. Поиск путей

Что нужно знать:

· если в город R можно приехать только из городов X, Y, и Z, то число различных путей из города A в город R равно сумме числа различных путей проезда из A в X, из A в Y и из A в Z, то есть

,

где обозначает число путей из вершины A в некоторую вершину Q

· число путей конечно, если в графе нет циклов – замкнутых путей

Ещё пример задания:

На карту нанесены 4 города (A, B, C и D). Известно, что

между городами A и С – три дороги

между городами C и B – две дороги

между городами A и B – две дороги

между городами C и D – две дороги

между городами B и D – четыре дороги

По каждой из этих дорог можно ехать в обе стороны. Сколькими различными способами можно проехать из города А в город D, посещая каждый город не более одного раза?

Решение:

1) нарисуем граф, в котором множественные дороги из одного города в другой будем обозначать одной дугой и подписывать около неё количество дорог:

2) выпишем все маршруты, по которым можно ехать из A в D так, чтобы дважды не проезжать один и тот же город:

2 4 3 2 2 2 2 3 2 4
A ® B ® D A ® С ® D A ® B ® С ® D A ® C ® B ® D

3) теперь рассмотрим маршрут A ® B ® D; сначала можно двумя путями приехать из A в B, а затем – 4-мя путями из B в D; поэтому общее количество различных маршрутов равно произведению этих чисел: 2*4 = 8

4) аналогично находит количество различных путей по другим маршрутам

A ® С ® D: 3*2 = 6

A ® B ® С ® D: 2*2*2 = 8

A ® C ® B ® D: 3*2*4 = 24

5) всего получается 8 + 6 + 8 + 24 = 46.

6) Ответ: 46.

Пример задания:

На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

Е

Решение (1 вариант, подстановки):

7) начнем считать количество путей с конца маршрута – с города К

8) будем обозначать через NX количество различных путей из города А в город X

9) общее число путей обозначим через N

10) по схеме видно, что NБ = NГ = 1

11) очевидно, что если в город X можно приехать только из Y, Z, то NX = NY + N­Z, то есть нужно сложить число путей, ведущих из A во все города, откуда можно приехать в город X

12) поскольку в K можно приехать из Е, Д, Ж или И, поэтому

N = N­К = NД + NЕ + NЖ + NИ

13) в город И можно приехать только из Д, поэтому NИ = NД

14) в город Ж можно приехать только из Е и В, поэтому

Ж = NЕ + NВ

15) подставляем результаты пп. 6 и 7 в формулу п. 5:

N = NВ + 2NЕ + 2NД

16) в город Д можно приехать только из Б и В, поэтому

Д = NБ + NВ

так что

N = 2NБ + 3NВ + 2NЕ

17) в город Е можно приехать только из Г, поэтому N­Е = NГ так что

N = 2NБ + 3NВ + 2NГ

18) по схеме видно, что NБ = NГ = 1, кроме того, NВ = 1 + N­Б + NГ = 3

19) окончательно N = 2NБ + 3NВ + 2NГ = 2·1 + 3·3 + 2·1 = 13

20) Ответ: 13.

Решение (2 вариант, удобная форма записи):

1) начнем считать количество путей с конца маршрута – с города К

2) записываем для каждой вершины, из каких вершин можно в нее попасть

К ИДЖЕ

И Д

Ж ВЕ

Е Г

Д БВ

Г А

В АБГ

Б А

3) теперь для удобства «обратного хода» вершины можно отсортировать так[1], чтобы сначала шли все вершины, в которые можно доехать только из начальной точки А:

Б А

Г А

затем на каждом шаге добавляем те вершины, в которые можно доехать из уже добавленных в список (и из исходной точки):

В АБГ

Е Г

далее добавляем все вершины, куда можно доехать из А, Б, Г, В и Е:



Д БВ

Ж ВЕ

на следующем шаге добавляем вершину И

И Д

и, наконец, конечную. вершину

К ИДЖЕ

именно в таком порядке мы и будем вычислять количество путей для каждой вершины

4) теперь идем по полученному списку вершин, полагая, что количество вариантов попасть в вершину равно суммарному количеству вариантов попасть в ее непосредственных предшественников.

NБ = 1, NГ = 1

NВ = 1+1+1 = 3, NЕ = 1

NД = 1+3 = 4, NЖ = 3 + 1 = 4

NИ = 4,

N = NК = 4 + 4 + 4 + 1 = 13

5) заметим, что вершины можно и не сортировать специально, а просто выбирать возможный порядок вычисления: проверять, какие значения известны и какие можно рассчитать с их помощью на следующем шаге

6) Ответ: 13.

Возможные ловушки и проблемы: · очень важна аккуратность и последовательность; сначала идем от конечной точки к начальной, выписывая все вершины, из которых можно приехать в данную; затем идем обратно, определяя числовые значения · построение полного дерева маршрутов – занятие трудоемкое и достаточно бесперспективное, даже грамотные учителя информатики здесь в большинстве случаев что-то забывают и ошибаются

Решение (3 вариант, перебор вершин по алфавиту):

1) Запишем вершины в алфавитном порядке и для каждой из них определим, из каких вершин можно в нее попасть

Б А

В АБГ

Г А

Д БВ

Е Г

Ж ВЕ

И Д

К ИДЖЕ

2) теперь определяем количество путей; сначала ставим 1 для тех вершин, в которые можно проехать только из начальной (А):

вершина откуда? N
Б А
В АБГ
Г А
Д БВ
Е Г
Ж ВЕ
И Д
К ИДЖЕ

3) затем на каждом шаге добавляем те вершины, в которые можно доехать из уже добавленных в список (и из исходной точки):

вершина откуда? N
Б А
В АБГ
Г А
Д БВ
Е Г
Ж ВЕ
И Д
К ИДЖЕ

4) следующий шаг

вершина откуда? N
Б А
В АБГ
Г А
Д БВ
Е Г
Ж ВЕ
И Д
К ИДЖЕ

5) и последние 2 шага

вершина откуда? N
Б А
В АБГ
Г А
Д БВ
Е Г
Ж ВЕ
И Д
К ИДЖЕ

6) Ответ: 13.

Решение (4 вариант, перебор всех путей с начала, А. Яфарова):

1) запишем все вершины, в которые есть прямой путь из вершины A: Б, В и Г; получается три начальных отрезка:

АБ, АВ, АГ

2) рассмотрим маршрут АБ: из Б можно ехать в В и Д, поэтому получаем два маршрута:

АБВ, АБД

3) рассматриваем конечные точки этих маршрутов: из В можно ехать в Д и Ж, а из Д – в И и К:

АБВД, АБВЖ, АБДИ, АБДК

4) снова смотрим на конечные точки: из Д едем в И и К, из Ж и И – только в К:

АБВДИ, АБВДК, АБВЖК, АБДИК, АБДК

5) из И едем только в К, таким образом, все возможные маршруты, содержащие участок АБ, доведены до конечной точки К, всего 5 таких маршрутов:

АБВДИК, АБВДК, АБВЖК, АБДИК, АБДК

6) затем аналогично рассматриваем маршруты, которые начинаются с АВ:

АВД, АВЖ

АВДИ, АВДК, АВЖК

АВДИК, АВДК, АВЖК

всего 3 маршрута

7) наконец, остается рассмотреть маршруты, которые начинаются с АГ:

АГВ, АГЕ

АГВД, АГВЖ, АГЕЖ, АГЕК

АГВДИ, АГВДК, АГВЖК, АГЕЖК, АГЕК

АГВДИК, АГВДК, АГВЖК, АГЕЖК, АГЕК

всего 5 маршрутов

8) складываем количество маршрутов для всех начальных участков: 5 + 3 + 5 = 13

9) Ответ: 13.

Возможные проблемы: · при большом количестве маршрутов легко запутаться и что-то пропустить

Решение (5 вариант, графический, О.О. Грущак, КузГПА):

1) Главную идею решения: (число дорог в город N есть сумма дорог, приводящих в города, из которых есть прямой проезд в город N), отразим на самой схеме, показывая на ней ЧИСЛО ДОРОГ, приводящих в каждый город.

2) Последовательность очевидна: начинаем с Б и Г (городов, куда есть по 1-й дороге из А)

3) Посчитаем дороги в В: 1 (из A)+ 1(дороги города Б)+ 1(дороги города В)= 3

4) Аналогично посчитаем дороги в Д, И, Е, Ж:

5) Определяем число дорог в город К, как сумму дорог в города, с которыми он связан: Д, И, Ж, Е.

6) Ответ: 13.


Задачи для тренировки:

1) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

2) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город З?

3) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город З?

4) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

 

5) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

 

6) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Ж?

7) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Ж?

8) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Ж?

9) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Ж?

10) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Ж?

 

11) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

12) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

13) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

14) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

15) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

16) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

 

17) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город И?

18) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город И?

19) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город И?

20) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город З?

21) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

22) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

23) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

24) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

25) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

26) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

27) На рисунке – схема дорог, связывающих города A, B, C, D, E, F, G, H, I, J, K. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города A в город K?

28) На рисунке – схема дорог, связывающих города A, B, C, D, E, F, G, H, I, J, K. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города A в город K?

29) (http://ege.yandex.ru) На рисунке – схема дорог, связывающих города A, B, C, D, E, F, G, H, I, J, K. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города A в город K?

30) На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Л?


[1] Такая процедура называется топологической сортировкой графа.


Дата добавления: 2015-09-27 | Просмотры: 733 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.065 сек.)