Окружность и круг.
Длина окружности
длина дуги окружности
(n - величина дуги в градусах, j - величина дуги в радианах).
Площадь круга
площадь кольца
.
Площадь сектора
; (a - величина дуги в градусах)
Свойства окружности
1) касательная и радиус, проведенный в точку касания,
перпендикулярны: r ^ l
2) отрезки касательных, проведенные к окружности
из точки, лежащей вне ее, равны, т.е.
AB = AC
3) диаметр, перпендикулярный хорде, делит ее пополам; диаметр, проходящий через середину хорды, перпендикулярен ей.
(AB) ^ (CD) Û CK = KD
4) квадрат длины касательной равен произведению длины
секущей на ее внешнюю часть:
AB 2 =
5) центры касающихся окружностей О1, О2 и точка их касания М лежат на одной прямой.
6) в четырехугольник можно вписать окружность тогда и
только тогда, когда суммы длин противоположных
сторон равны, т.е.:
AB + BC = AB + CD
7) около четырехугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна
1800, т.е.:
Следствия из свойства 7):
- из всех параллелограммов только около прямоугольника можно описать окружность;
- около трапеции можно описать окружность тогда и только тогда, когда она равнобокая;
8) центральный угол измеряется градусной мерой дуги, на
которую он опирается:
ÐО = Èa
9) величина вписанного угла в два раза меньше центрального
угла, опирающегося на эту же дугу
Ð AOC = 2Ð ABC
10) вписанные углы, опирающиеся на одну и ту же дугу, имеют одинаковую величину
Ð ABD = Ð ACD
Дата добавления: 2015-09-27 | Просмотры: 406 | Нарушение авторских прав
|