Гомеостаз. Любой организм может существовать лишь в определенных условиях
Гипофиз
Введение
Любой организм может существовать лишь в определенных условиях. Наша
наследственность требует, например, чтобы окружающая нас газовая среда
содержала кислород. Пусть это будет искусственно получаемый кислород,
например в условиях космического полета, но человеку необходим кислород,
чтобы жить.
Не все люди могут делать все одинаково хорошо, поскольку они наследуют
разные способности. Даже если вы не обладаете каким либо талантом, в той
же степени как и кто-то другой, вы должны развивать в себе те способности,
которые у вас есть и приносить пользу на своем месте и преодолевать
имеющиеся ограничения с помощью сотрудничества.
Поведение всех организмов включает как врожденные формы поведения, так и
поведение, возникающее в результате обучения. Примером врожденного
поведения служат главным образом такие врожденные автоматические реакции
на воздействие среды, как рефлексы.
Ученые постепенно узнают все больше и больше о врожденном и приобретенном
поведении. Биологи видят, что поведение организма является результатом
взаимодействия его генотипа – унаследованных признаков и его собственного
приобретаемого опыта.
Гомеостаз
Организм можно определить как физико-химическую систему, существующую в
окружающей среде в стационарном состоянии. Именно эта способность живых
систем сохранять стационарное состояние в условиях непрерывно меняющейся
среды и обусловливает их выживание. Для обеспечения стационарного
состояния у всех организмов – от морфологически простых до наиболее сложных
выработались разнообразные анатомические, физиологические и поведенческие
приспособления, служащие одной цели – сохранению постоянства внутренней
среды.
Впервые мысль о том, что постоянство внутренней среды обеспечивает
оптимальные условия для жизни и размножения организмов, была высказана в
1857г. французским физиологом Клодом Бернаром. На протяжении всей его
научной деятельности Клода Бернара поражала способность организмов
регулировать и поддерживать в достаточно узких границах такие
физиологические параметры, как температура тела или содержание в нем воды.
Это представление о саморегуляции как основе физиологической стабильности
он резюмировал в виде ставшего классическим утверждения: «Постоянство
внутренней среды является обязательным условием свободной жизни».
Клод Бернар постоянно подчеркивал различие между внутренней средой, в
которой живут организмы, и внутренней средой, в которой находятся их
отдельные клетки (у млекопитающих это тканевая, или интерстициальная,
жидкость), и понимал, как важно, чтобы внутренняя среда оставалась
неизменной. Так, например, млекопитающие способны поддерживать температуру,
тела несмотря на колебания окружающей температуры. Если становится слишком
холодно, животное может переместиться в более теплое или более защищенное
место, а если это невозможно, вступают в действие механизмы саморегуляции,
которые повышают температуру тела и препятствуют теплоотдаче. Адаптивное
значение этого заключается в том, что организм как целое функционирует
более эффективно, так как клетки, из которых он состоит, находятся
оптимальных условиях системы саморегуляции действуют не только на уровне
организма, но и на уровне клеток. Организм является суммой составляющих его
клеток, и оптимальное функционирование организма как целого зависит от
оптимального функционирования образующих его частей.
В 1932 году американский физиолог Уолтер Кэннон ввел термин гомеостаз
(состояние) для определения механизмов, поддерживающих «постоянство
внутренней среды». Функция гомеостатических механизмов состоит в том, что
он поддерживает стабильность клеточного окружения и тем самым обеспечивает
независимость организма от внешней среды – в той мере, в какой эти
механизмы эффективны. Независимость от условий окружающей среды является
показателем жизненного успеха и на этом основании млекопитающих следует
рассматривать как преуспевающий класс: они способны поддерживать
относительно постоянный уровень активности, несмотря на колебания внешних
условий.
Для того чтобы обеспечить более или менее стабильную активность
организма, необходима регуляция на всех уровнях – от молекулярного до
популяционного. Это требует использования различных биохимических,
физиологических и поведенческих механизмов, наиболее соответствующих уровню
сложности и образу жизни данного вида, и во всех этих отношениях
млекопитающие, очевидно, лучше вооружены, чем простейшие.
Как показывают исследования, существующие у живых организмов способы
регуляции имеют много общих черт с регулирующими устройствами в неживых
системах, как машины. И в том и в другом случае стабильность достигается
благодаря определенной форме управления. Винер в 1948 г. дал науке об
управлении название кибернетики (рулевой). Кибернетика занимается, в
частности, общими закономерностями регулирования в живых и неживых
системах. Физиологи, изучающие растения и животных, часто используют точные
математические модели теории управления для объяснения механизмов действия
биологических регуляционных систем.
Строгое применение теории управления к биологическим процессам
позволило глубже понять функциональные взаимоотношения между компонентами
многих физиологических механизмов и прояснить многие вещи, которые ранее
казались запутанными. Так, например, живые системы рассматриваются как
открытые системы, поскольку они нуждаются в постоянном обмене веществами с
окружающей средой. В самом деле, живые системы, находятся в динамическом
равновесии со средой; нужен постоянный приток энергии, чтобы предотвратить
полное уравновешивание с окружающим миром. Равновесие возможно только после
смерти организма, когда он становится термодинамически стабильным по
отношению к среде. Основные компоненты любой системы управления показаны на
рис.1
Вход Детектор Эффектор
Выход
Дата добавления: 2015-09-27 | Просмотры: 588 | Нарушение авторских прав
|