АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Частота и причины мутаций

Прочитайте:
  1. S:Причины преренальной ОПН
  2. Алиментарное бесплодие. Причины, диагностика и профилактика.
  3. АЛЛЕЛИ И ГЕНОТИПЫ: ЧАСТОТА ВСТРЕЧАЕМОСТИ И ДИНАМИКА В ПОПУЛЯЦИЯХ
  4. АНАТОМИЧЕСКИЕ ПРИЧИНЫ ПРИВЫЧНОГО НЕВЫНАШИВАНИЯ БЕРЕМЕННОСТИ
  5. АППЕНДИЦИТ У РЕБЕНКА: ПРИЧИНЫ, СИМПТОМЫ, ЛЕЧЕНИЕ
  6. Артерiальний тиск змiнився з 110/70 до 120/40 мм рт.ст., частота
  7. АРТЕРИО-ВЕНОЗНАЯ МАЛЬФОРМАЦИЯ И ПРИЧИНЫ ЕЕ ВОЗНИКНОВЕНИЯ
  8. Б. Причины иммунных ПТО. Обстоятельства, приводящие к иммунным ПТО.
  9. Бактериальный шок: 1) определение, этиология, клинические проявления 2) наиболее характерные входные ворота 3) факторы прорыва 4) патологическая анатомия 5) причины смерти.
  10. Бронхиальная астма: 1) этиология, патогенез 2) классификация 3) патоморфология острого периода 4) патоморфология при повторяющихся приступах 5) осложнения и причины смерти.

Учёт возникающих мутаций представляет собой большие трудности. Большинство мутаций рецессивны. Они возникают в генах, локализованных в хромосомах половых клеток. Гамета, несущая рецессивную мутацию соединяется с гаметой, которая мутации не несёт. Поэтому вновь возникшая мутация фенотипически не проявляется. В последующих поколениях мутация будет размножаться и распространяться среди особей вида. Лишь когда соединятся гаметы, несущие одну и ту же рецессивную мутацию, она проявится фенотипически.
В природных условиях мутация каждого отдельно взятого гена происходят редко. Поскольку у организма имеется несколько тысяч генов, так что число мутаций значительно.
В связи с тем, что мутации каждого гена происходят редко, можно говорить о его значительной стойкости. Это имеет большое биологическое значение. Относительная стойкость видов – важное условие приспособленности организма к среде обитания.
Способность к мутированию – одно из основных свойств гена. Каждая мутация вызывается какой-то причиной. В большинстве причины неизвестны. Мутации связаны с изменениями во внешней среде. Это доказывается тем, что искусственное воздействие различных факторов резко повышает число мутаций. Особенно эффективны факторы влияющие на нуклеиновые кислоты.
Экспериментальное получение мутаций. Впервые, резкое повышение мутаций было получено действием рентгеновских лучей. Число мутаций повысилось в 150 раз. Кроме лучей Рентгена, мутации могут быть вызваны различными химическими и физическими воздействиями. Получение мутаций имеет практическое значение т.к. повышает наследственную изменчивость, давая материал для отбора.

Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — тип мутаций, которые изменяют структуру хромосом. Классифицируют делеции (утрата участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую), а также дицентрические и кольцевые хромосомы. Известны также изохромосомы, несущие два одинаковых плеча. Если перестройка изменяет структуру одной хромосомы, то такую перестройку называют внутрихромосомной (инверсии, делеции, дупликации, кольцевые хромосомы), если же двух разных, то межхромосомной (дупликации, транслокации, дицентрические хромосомы). Хромосомные перестройки подразделяют также на сбалансированные и несбалансированные. Сбалансированные перестройки (инверсии, реципрокные транслокации) не приводят к потере или добавлению генетического материала при формировании, поэтому их носители, как правило, фенотипически нормальны. Несбалансированные перестройки (делеции и дупликации) меняют дозовое соотношение генов, и, как правило, их носительство сопряжено с клиническими отклонениями от нормы.

Хромосомные перестройки играют определенную роль в эволюционном процессе и видообразовании, в нарушении фертильности, в онкологических и врождённых наследственных заболеваниях человека.

Хромосомные перестройки были открыты у дрозофил при помощи генетического анализа. В некоторых скрещиваниях соотношение числа потомков в разных классах сильно отличалось от ожидаемого, и это объяснили наличием перестроек в хромосомах родителей. Делеции, дупликации и транслокации обнаружил К. Бриджес в 1916, 1919 и 1923 годах, соответственно. Первую инверсию описал А. Стёртевант в 1921 году, сравнивая порядок генов в хромосоме 3 у D.melanogaster и D.simulans. Первые наблюдения хромосомных перестроек были сделаны на политенных хромосомах слюнных желез. Лишь спустя некоторое время существование перестроек было доказано цитологически на митотических хромосомах. Однако проще всего перестройки можно увидеть в политенных хромосомах у гетерозиготных особей, благодаря образованию петель и крестообразных структур. Также перестройки можно увидеть в профазе мейоза при образовании синаптонемных комплексов, где, благодаря синапсису гомологичных хромосом, также образуются петли и крестообразные структуры.[1]:1

Возникновение хромосомных аберрации

Основной предпосылкой для возникновения хромосомных перестроек является появление в клетке двунитевых разрывов ДНК, то есть разрывов обоих нитей спирали ДНК в пределах нескольких п.о. Двунитевые разрывы ДНК возникают в клетке спонтанно или под действием различных мутагенных факторов: физической (ионизирующее излучение), химической или биологической (транспозоны, вирусы) природы. Двунитевые разрывы ДНК возникают запрограммированно во время профазы I мейоза, а также при созревании Т- и B-лимфоцитов во время специфической соматической (V(D)J рекомбинации. Нарушения и ошибки процесса воссоединения двунитевых разрывов ДНК приводят к появлению хромосомных перестроек.

Классификации

Делеции

Некоторые типы хромосомных перестроек

Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции. Если после образования делеции хромосома сохранила центромеру, она аналогично другим хромосомам передается при митозе, участки же без центромеры, как правило, утрачиваются. При конъюгации гомологичных хромосом во время мейоза у нормальной хромосомы на месте, соответствующем интеркалярной делеции у дефектной хромосомы, образуется делеционная петля, которая компенсирует отсутствие делетированного участка.

Врождённые делеции у человека редко захватывает протяженные участки хромосом, обычно такие аберрации приводят к гибели эмбриона на ранних этапах развития. Самым хорошо изученным заболеванием, обусловленным достаточно крупной делецией, является синдром кошачьего крика, описанный в 1963 году Жеромом Леженом. В его основе лежит делеция участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функций сердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития, умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000.

Современные методы выявления хромосомных нарушений, прежде всего флуоресцентная гибридизация in situ, позволили установить связь между микроделециями хромосом и рядом врождённых синдромов. Микроделециями, в частности, обусловлены давно описанные синдром Прадера-Вилли и синдром Вильямса.


Дата добавления: 2015-09-27 | Просмотры: 583 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)