АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
АЛЛЕЛИ И ГЕНОТИПЫ: ЧАСТОТА ВСТРЕЧАЕМОСТИ И ДИНАМИКА В ПОПУЛЯЦИЯХ
Для психогенетики понятия и теории популяционной генетики чрезвычайно важны потому, что индивидуумы, осуществляющие передачу генетического материала из поколения в поколение, не являются изолированными особями; они отражают особенности генетической структуры той популяции, к которой принадлежат.
Рассмотрим следующий пример. Уже упоминавшаяся фенилкетонурия (ФКУ) представляет собой врожденную ошибку метаболизма, которая вызывает постнатальное поражение мозга, приводящее, при отсутствии необхо-
* Панмиксия — случайное, не зависящее от генотипа и фенотипа особей образование родительских пар (случайное скрещивание).
** Изоляция — существование каких-либо барьеров, нарушающих панмик-сию; изоляция является основной границей, разделяющей соседние популяции в любой группе организмов.
димого вмешательства, к тяжелым формам умственной отсталости. Частота встречаемости этого заболевания варьирует от 1:2600 в Турции до 1:119000 в Японии, что свидетельствует о разной частоте аллелей-мутантов в разных популяциях.
В 1985 г. ген, мутации которого вызывают развитие ФКУ (ген Phe), был картирован; оказалось, что он локализован на коротком плече 12-й хромосомы. Изучая структуру этого гена у здоровых и больных ФКУ индивидуумов, ученые обнаружили 31 мутацию в разных участках гена Phe. Тот факт, что частоты встречаемости и характер этих мутаций в разных популяциях различны, позволяет формулировать гипотезы о том, что большинство их произошло независимо друг от друга, в разные моменты времени и, вероятнее всего, после разделения человечества на популяции.
Результаты популяционных исследований имеют огромное практическое значение. В Италии, например, частота встречаемости определенных аллелей-мутантов в гетерозиготном состоянии достаточно велика, поэтому там проводится пренатальная диагностика ФКУ для своевременного медицинского вмешательства. В азиатских популяциях частота встречаемости мутант-ных аллелей в 10-20 раз ниже, чем в европейских, поэтому в странах этого региона осуществление пренатального скрининга не является первоочередной задачей.
Таким образом, генетическая структура популяций — один из важнейших факторов, определяющих особенности передачи по наследству различных признаков. Пример ФКУ (как и многие другие факты) показывает, что специфика изучаемой популяции должна учитываться при исследовании механизмов передачи по наследству любого признака человека.
Популяции человека подобны живым организмам, которые тонко реагируют на все изменения своего внутреннего состояния и находятся под постоянным влиянием внешних факторов. Мы начнем наше краткое знакомство с основными понятиями популяционной генетики с определенного упрощения: мы как бы на некоторое время выключим все многочисленные внешние и внутренние факторы, влияющие на естественные популяции, и представим себе некоторую популяцию в состоянии покоя. Затем мы будем «включать» один фактор за другим, добавляя их в сложную систему, определяющую состояние естественных популяций, и рассматривать характер их специфических влияний. Это позволит нам получить представление о многомерной реальности существования популяций человека.
ПОПУЛЯЦИИ В СОСТОЯНИИ ПОКОЯ (ЗАКОН ХАРДИ-ВАЙНБЕРГА)
На первый взгляд, доминантное наследование, когда при встрече двух аллелей один подавляет действие другого, должно приводить к тому, что частота встречаемости доминантных генов от поколения к поколению будет увеличиваться. Однако этого не происходит; наблюдаемая закономерность объясняется законом Харди-Вайнберга.
Представим себе, что мы играем в компьютерную игру, программа которой написана таким образом, что в ней полностью отсутству-
ет элемент случайности, т.е. события развиваются в полном соответствии с программой. Смысл игры состоит в том, чтобы создать популяцию диплоидных (т.е. содержащих удвоенный набор хромосом) организмов, задать закон их скрещивания и проследить, что произойдет с этой популяцией через несколько поколений. Представим также, что создаваемые нами организмы генетически чрезвычайно просты: у каждого из них только по одному гену (гену А). Для начала определим, что в популяции существует лишь две альтернативных формы гена А — аллели а и а. Поскольку мы имеем дело с диплоидными организмами, генетическое разнообразие популяции может быть описано перечислением следующих генотипов: аа, аа и аа. Определим частоту встречаемости а как р, а частоту встречаемости а как q, причем р и q одинаковы у обоих полов. Теперь определим характер скрещивания созданных нами организмов: установим, что вероятность формирования брачной пары между особями не зависит от их генетического строения, т.е. частота скрещивания определенных генов пропорциональна доле, в которой эти генотипы представлены в популяции. Подобное скрещивание называется случайным скрещиванием. Начнем играть и пересчитаем частоту встречаемости исходных генотипов (аа, аа и аа) в дочерней популяции. Мы обнаружим, что
(p + q)2 =p2+2pq + q2
а а aa аа аа (5.1)
где буквам в нижней строке, обозначающим аллели и генотипы, соответствуют их частоты, расположенные в верхней строке. Теперь сыграем в игру 10 раз подряд и пересчитаем частоту встречаемости генотипов в 10-м поколении. Полученный результат подтвердится: частоты встречаемости будут такими же, как и в формуле 5.1.
Повторим игру с начала, только теперь определим условия иначе, а именно: р и q не равны у особей мужского и женского полов. Определив частоты встречаемости исходных генотипов в первом поколении потомков, мы обнаружим, что найденные частоты не соответствуют формуле 5.1. Создадим еще одно поколение, опять пересчитаем генотипы и обнаружим, что во втором поколении частоты встречаемости исходных генотипов вновь соответствуют этой формуле. Повторим игру еще раз, но теперь вместо двух альтернативных форм гена А зададим три - а, а и а0, частоты встречаемости которых равны соответственно р, q и z и примерно одинаковы у особей мужского и женского полов. Пересчитав частоты встречаемости исходных генотипов во втором поколении, обнаружим, что
(p + q + z)2 = p2 +q2 +z2 + 2pq + 2pz + 2qz 0 00 0 0
а а a aa аа a a аа a a аа (5.2)
Создадим еще несколько поколений и пересчитаем опять — частоты встречаемости исходных генотипов не изменятся.
Итак, подведем итоги. На основании проведенного нами исследования в рамках компьютерной игры-симуляции, мы обнаружили, что:
□ ожидаемые частоты исходных генотипов в производных поколениях описываются путем возведения в квадрат многочлена, являющегося суммой частот аллелей в популяции (иными словами, частоты генотипов связаны с частотами генов квадратичными соотношениями);
□ частоты генотипов остаются неизменными из поколения в поколение;
□ при случайном скрещивании ожидаемые частоты исходных генотипов достигаются за одно поколение, если частоты аллелей у двух полов одинаковы, и за два поколения, если у двух полов в первом поколении частоты различны.
Воспроизведенные нами зависимости впервые были описаны в начале нынешнего века (1908) независимо друг от друга английским математиком Г. Харди и немецким врачом В. Вайнбергом. В их честь эта закономерность была названа законом Харди-Вайнберга (иногда используются и другие термины: равновесие Харди-Вайнберга, соотношение Харди-Вайнберга).
Этот закон описывает взаимоотношения между частотами встречаемости аллелей в исходной популяции и частотой генотипов, включающих эти аллели, в дочерней популяции. Он является одним из краеугольных принципов популяционной генетики и применяется при изучении естественных популяций. Если в естественной популяции наблюдаемые частоты встречаемости определенных генов соответствуют частотам, теоретически ожидаемым на основании закона Харди-Вайнберга, то о такой популяции говорят, что она находится в состоянии равновесия по Харди-Вайнбергу.
Закон Харди-Вайнберга дает возможность рассчитать частоты генов и генотипов в ситуациях, когда не все генотипы могут быть выделены феноти-пически в результате доминантности некоторых аллелей. В качестве примера опять обратимся к ФКУ. Предположим, что частота встречаемости гена ФКУ (т.е. частота встречаемости аллеля-мутанта) в некой популяции составляет q = 0,006. Из этого следует, что частота встречаемости нормального аллеля равна р = 1 - 0,006 = 0,994. Частоты генотипов людей, не страдающих умственной отсталостью в результате ФКУ, составляют р2= 0,9942= 0,988 для генотипа аа и 2pq =2'0,994-0,006 = 0,012 для генотипа аа.
Теперь представим себе, что некий диктатор, не знающий законов популяционной генетики, но одержимый идеями евгеники, решил избавить свой народ от умственно отсталых индивидуумов. В силу того, что гетерозиготы фенотипически неотличимы от гомозигот, программа диктатора должна строиться исключительно на уничтожении или стерилизации рецессивных гомо-
зигот. Однако, как мы уже определили, большинство аллелей-мутантов встречаются не у гомозигот (q2= 0,000036), а у гетерозигот (2pq = 0,012). Следовательно, даже тотальная стерилизация умственно отсталых приведет лишь к незначительному снижению частоты аллеля-мутанта в популяции: в дочернем поколении частота умственной отсталости будет примерно такой же, как в исходном поколении. Для того чтобы существенно снизить частоту встречаемости аллеля-мутанта, диктатору и его потомкам пришлось бы осуществлять подобного рода отбор или стерилизацию на протяжении многих поколений.
Как уже отмечалось, закон Харди-Вайнберга имеет две составляющие, из которых одна говорит о том, что происходит в популяции с частотами аллелей, а другая - с частотами генотипов, содержащих данные гены, при переходе от поколения к поколению. Напомним, что равенство Харди-Вайнберга не учитывает воздействия множества внутренних и внешних факторов, определяющих состояние популяции на каждом шагу ее эволюционного развития. Закон Харди-Вайнберга выполняется, когда в популяции: 1) отсутствует мутационный процесс; 2) отсутствует давление отбора; 3) популяция бесконечно велика; 4) популяция изолирована от других популяций и в ней имеет место панмиксия*. Обычно процессы, определяющие состояние популяции, разбиваются на две большие категории — те, которые влияют на генетический профиль популяции путем изменения в ней частот генов (естественный отбор, мутирование, случайный дрейф генов, миграция), и те, которые влияют на генетический профиль популяции путем изменения в ней частот встречаемости определенных генотипов (ассортативный подбор супружеских пар и инбридинг), Что же происходит с частотами аллелей и генотипов при условии активизации процессов, выступающих в роли «природных нарушителей» покоя популяций?
Дата добавления: 2015-09-27 | Просмотры: 923 | Нарушение авторских прав
|