АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
НЕФРОН КАК МОРФО-ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ПОЧКИ.
У человека каждая почка состоит примерно из одного миллиона структурных единиц, называемых нефронами. Нефрон является структурной и функциональной единицей почки потому, что он осуществляет всю совокупность процессов, в результате которых образуется моча.
Каждый нефрон состоит из аппарата для фильтрации, называемого почечным (мальпегиевым) тельцем, - двустенной капсулой клубочка (капсула Шумлянского - Боумена), внутри которой находится клубочек капилляров и выходящего из него канальца. Диаметр капсулы клубочка около 0,2 мм.
Почечный клубочек образован пучком капилляров, представляющих собой разветвления афферентной артериолы - приносящего сосуда (vas afferens), эти капилляры собираются в выносящий сосуд (vasefferens). К капиллярам примыкает внутренняя стенка двухслойной боуменовой капсулы, образованная канальцевым эпителием, которая не доходит до соприкосновения с задней частью капсулы. Между стенками капсулы имеется полость (мочевое пространство или боуменово пространство), от которой начинается просвет канальца.
Почечные канальцы начинаются с извитых участков, переходящих в короткие прямые канальцы. Прямые канальцы продолжаются в наружные слои мозгового вещества. Проксимальный отдел нефрона состоит из извитого и прямого канальца, отличительной особенностью является наличие щелочной каемки, большое количество микроворсинок, обращенных в просвет канальца. Между проксимальным и дистальным отделом располагается тонкий сегмент - это нисходящая тонкая часть петли Генле. Она заканчивается шпилькообразным коленом петли, и каналец дальше поднимается параллельно нисходящей части. Восходящая часть петли Генле может включать тонкую и толстую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Клетки восходящего отдела петли Генле нефрона и дистального извитого канальца, лишены щеточной каемки. Большое значение имеет тот факт, что этот отдел канальца нефронов обязательно прикасается к клубочку между приносящей и выносящей выносящими артериолами в области плотного пятна. Область контакта этих структур называется юкстагломерулярным комплексом. В корковом веществе дистальный извитой каналец открывается в собирательную трубочку. Ветви этих трубочек располагаются в корковом веществе и внутренних слоях мозгового вещества. В конечном счете, собирательные трубочки открываются в области сосочков чашек почечных лоханок. Средняя длина собирательных трубочек составляет 22 мм. Общая длина почечных канальцев одного нефрона у человека широко варьирует и может достигать 35-50 мм (длина проксимального отдела составляет около 12-24 мм, дистального 5-8 мм).
Каждая почечная лоханка соединяется с полостью мочеточника, который опорожняется в мочевой пузырь, где моча временно находится и периодически из него удаляется. После поступления в чашечку состав мочи уже больше не изменяется. С этого участка остальная часть мочевыводящей системы служит просто для выведения жидкости.
Типы нефронов
В различных сегментах канальцев нефрона имеются существенные отличия в зависимости от их локализации в той или иной зоне почки, величине клубочков (юкстамедулярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев, длине отдельных участков нефрона, особенно петель. Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе.
В корковом слое находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся тонкие нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки. Во внутреннем слое мозгового вещества располагаются тонкие отделы петель нефрона и собирательные трубки.
Такое расположение частей нефрона в почке неслучайно. Это важно в осмотическом концентрировании мочи.
В почке функционирует несколько различных типов нефронов: суперфициальные ( поверхностные, короткая петля ); интракортикальные ( внутри коркового слоя ) и юкстамедулярные ( у границы коркового и мозгового слоя ). Одним из важных отличий, перечисленных трех типов нефронов, является длина петли Генле. Все поверхностные корковые нефроны обладают короткой петлей, в результате чего колено петли располагается выше границы между наружной и внутренней частями мозгового вещества. У всех юкстамедулярных нефронов длинные петли проникают во внутренний отдел мозгового вещества, часто достигая верхушки сосочка. Интракортикальные нефроны могут иметь и короткую и длинную петлю.
ОСОБЕННОСТИ КРОВОСНАБЖЕНИЯ ПОЧКИ
Почечный кровоток не зависит от системного артериального давления в широком диапазоне его изменений. Это связано с миогенной регуляцией, обусловленной способностью гладкомышечных клеток vas afferens сокращаться в ответ на растяжение их кровью (при повышении артериального давления). В результате количество протекающей крови остается постоянным.
В одну минуту через сосуды обеих почек у человека проходит около 1200 мл крови, т.е. около 20-25% крови, выбрасываемой сердцем в аорту. Масса почек составляет 0,43% массы тела здорового человека. Через сосуды коры почки протекает 91-93% крови, поступающей в почку, остальное ее количество снабжает мозговое вещество почки. Кровоток в коре почки в норме составляет 4-5 мл/мин на 1 г ткани. Это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что при изменении артериального давления (от 90 до 190 мм.рт.ст) кровоток почки остается постоянным. Это обусловлено высоким уровнем саморегуляции кровообращения в почке.
Короткие почечные артерии - отходят от брюшного отдела аорты и представляют собой крупный сосуд с относительно большим диаметром. После вхождения в ворота почек они делится на несколько междолевых артерий, которые проходят в мозговом веществе почки между пирамидами до пограничной зоны почек. Здесь от междольковых артерий отходят дуговые артерии. От дуговых артерий в направлении коркового вещества идут междольковые артерии, которые дают начало многочисленным приносящим клубочковым артериолам. В почечный клубочек входит приносящая (афферентная) артериола, в нем она распадается на капилляры, образуя мальпегиев клубочек. При слиянии они образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Эфферентная артериола, затем снова распадаются на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев.
Две сети капилляров – высокого и низкого давления. В капиллярах высокого давления (70 мм рт.ст.) – в почечном клубочке – происходит фильтрация. Большое давление связано с тем, что:1) почечные артерии отходят непосредственно от брюшного отдела аорты;2) их длина невелика; 3) диаметр приносящей артериолы в 2 раза больше, чем выносящей.
Таким образом, большая часть крови в почке дважды проходит через капилляры - вначале в клубочке, затем вокруг канальцев, это так называемая "чудесная сеть". Междольковые артерии образуют многочисленные аностомозы, которые играют компенсаторную роль. В образовании околоканальцевой капиллярной сети существенное значение имеет артериола Людвига, которая отходит от междольковой артерии, либо от приносящей клубочковой артериолы. Благодаря артериоле Людвига возможно экстрагломерулярное кровоснабжение канальцев в случае гибели почечных телец.
Артериальные капилляры, создающие околоканальцевую сеть, переходят в венозные. Последние образуют звездчатые венулы, расположенные под фиброзной капсулой - междольковые вены, впадающие в дуговые вены, которые сливаются и образуют почечную вену, которая впадает в нижнюю половую вену.
В почках различают 2-а круга кровообращения: большой корковый - 85-90% крови, малый юкстамедулярный - 10-15% крови. В физиологических условиях 85-90% крови циркулирует по большому (корковому) кругу почечного кровообращения, при патологии кровь движется по малому или укороченному пути.
Отличие кровоснабжения юкстамедулярного нефрона - диаметр приносящей артериолы примерно равен диаметру выносящей артериолы, эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, которые спускаются в мозговое вещество. Прямые сосуды образуют петли на различных уровнях мозгового вещества, поворачивая обратно. Нисходящие и восходящие части этих петель образуют противоточную систему сосудов, называемых сосудистым пучком. Юкстамедулярный путь кровообращения является своеобразным "шунтом" (шунт Труэта), в котором большая часть крови поступает не в корковое, а в мозговое вещество почек. Это так называемая дренажная система почек.
III. ФИЛЬТРАЦИОННО-РЕАБСОРБЦИОННАЯ ТЕОРИЯ
ОБРАЗОВАНИЯ МОЧИ
Еще в 1842 г немецкий физиолог К. Людвиг предполагал, что мочеобразование состоит из 3-х процессов. В 20-х годах ХХ столетия американский физиолог А. Ричардс подтвердил это предположение.
Образование конечной мочи является результатом трех последовательных процессов:
I. В почечных клубочках происходит начальный этап мочеобразования - клубочковая, или гломерулярная ультрофильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.
II. Канальцевая реабсорбция - процесс обратного всасывания профильтровавшихся веществ и воды.
III. Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.
ГЛОМЕРУЛЯРНАЯ ФИЛЬТРАЦИЯ
Образование мочи начинается с клубочковой фильтрации, т.е. переноса жидкости от гломерулярных капилляров в боуменову капсулу, при этом жидкость проходит через клубочковый фильтр.
Фильтрующая мембрана. Фильтрационный барьер в почечном тельце состоит из трех слоев: эндотелий гломерулярных капилляров, базальная мембрана и однорядный слой эпителиальных клеток, выстилающих капсулу Боумена. Первый слой, эндотелиальные клетки капилляров, перфорирован множеством отверствий ("окон" или "фенестров")(d пор 40 – 100 нм). Базальная мембрана это гелеподобное, бесклеточное ячеистое образование, состоящее из гликопротеинов и протеогликанов. Клетки эпителия капсулы, которые покоятся на базальной мембране, носят название подоцитов. У подоцитов необычное осьминогоподобное строение, в результате чего они имеют множество пальцевидных отростков, вдавленных в базальную мембрану. Щелевидные пространства между расположенными рядом пальцевидными отростками представляют собой проходы, по которым фильтрат, пройдя эндотелиальные клетки и базальную мембрану, проникает в боуменово пространство(d щелей между педикулами подоцитов 24-30 нм)
В базальной мембране имеются поры (d пор 2,9 – 3,7 нм), которые ограничивают прохождение форменных элементов крови, а также крупных молекул более 5-6 мм (молекул. вес больше 70000). Поэтому крупные белки, такие как глобулины (мол.вес 160000) и казеины (мол. вес 100000) в фильтрат не поступают. Альбумины плазмы крови (мол.вес около 70000) проходят в фильтрат в ничтожном количестве. В просвет капсулы нефрона проникает инулин около 22% яичного альбумина, 3% гемоглобина и менее 0,01 % сывороточного альбумина (в случае гемолиза) таким образом, происходит фильтрация. Свободному прохождению белков через гломерулярный фильтр препятствует отрицательно заряженные молекулы в веществе базальной мембраны и выстилке, лежащей на поверхности подоцитов, поскольку подавляющее число белков плазмы несет почти только отрицательные электрические заряды. При определенной форме патологии почки, когда на мембранах исчезает отрицательный заряд, становятся "проницаемыми" по отношению к белкам.
Проницаемость гломерулярного фильтра определяется минимальным размером молекул, которые способны фильтроваться. Зависит от:
1) размера пор
2) заряда пор (базальная мембрана – анионит)
3) гемодинамических условий
4) работы педикул подоцитов(в них имеются актомиозиновые нити) и мезангиальных клеток.
По своему составу первичная моча изотонична плазме крови. Неорганические соли и низкомолекулярные органические соединения (мочевина, мочевая кислота, глюкоза, аминокислоты, креатинин) - свободно проходят через клубочковый фильтр и поступают в полость капсулы Боумена. Основной силой, обеспечивающей возможность ультрафильтрации в почечных клубочках, является гидростатическое давление крови в сосудах, Его величина обусловлена тем, что приносящая артериола - больше по диаметру, чем выносящая, а также тем, что почечные артерии отходят от брюшного отдела аорты.
Площадь фильтрации в двух почках составляет 1,5 м2 на 100 г ткани (S тела 1,73 м2). Зависит от: 1) площади поверхности капилляров; 2) количества пор (больше, чем в любом другом органе; на их долю приходится до 30% поверхности эндотелиальных клеток);3) количества функционирующих нефронов.
Эффективное фильтрационное давление, от которого зависит скорость клубочковой фильтрации, определяется разностью между ГДК (гидростатическое давление крови) в капиллярах клубочка (у человека от 60-90 мм.рт.ст.) и противодействующими ему факторами - онкотическим давлением белков плазмы крови (ОДК равно 30 мм.рт.ст.) и гидростатическим давлением жидкости (или ультрафильтрата) или в капсуле клубочка около 20 мм.рт.ст.
ЭФД (эффективное фильтрационное давление). ЭФД = 70 мм.рт.ст. - (30 мм.рт.ст.+ 20 мм.рт.ст.) 3= 20мм.рт.ст.
ЭФД может варьировать от 20 до 30 мм.рт.ст. Фильтрация происходит только в том случае, если давление крови в капиллярах клубочков превышает сумму онкотического давления белков в плазме и давления жидкости в капсуле клубочка. При повышении фильтрационного давления диурез увеличивается, при понижении - уменьшается. Давление крови в капиллярах клубочков и кровоток через них почти не изменяются, так как при повышении системного артериального давления тонус приносящей артериолы возрастает, а при понижении системного давления ее тонус уменьшается (эффект Остроумова - Бейлиса).
Количество первичной мочи - 150-180 л/сутки. Через почки в сутки протекает 1700 литров крови.
Общая поверхность стенок капилляров клубочков через которые проходит фильтрация равна 1,5-2 м 2/100 г почки, т.е. равна поверхности тела.
Скорость клубочковой фильтрации 125 мл/мин у мужчин и 110мл/мин у женщин. Таким образом, около 180 литров в сутки. Средний общий объем плазмы в организме человека составляет примерно 3 л, это означает, что вся плазма фильтруется в почках около 60 раз в сутки. Способность почек фильтровать такой огромный объем плазмы дает возможность им экскретировать значительное количество конечных продуктов обмена веществ и очень точно регулировать элементный состав жидкостей внутренней среды организма.
IV. КАНАЛЬЦЕВАЯ РЕАБСОРБЦИЯ
В почках человека за одни сутки образуется до 170 л фильтрата, а выделяется 1-1,5л конечной мочи, остальная жидкость всасывается в канальцах. Первичная моча изотонична плазме крови (т.е. это плазма крови без белков) Обратное всасывание веществ в канальцах состоит в том, чтобы вернуть все жизненно-важные вещества и в необходимых количествах из первичной мочи.
Молекулярные механизмы, участвующие в осуществлении процессов реабсорбции те же, что и механизмы, действующие при переносе молекул через плазматические мембраны в других частях организма это диффузия, активный и пассивный транспорт, эндоцитоз и пр. Есть два пути для движения реабсорбируемого вещества из просвета в интерстициальное пространство.
Первый - движение между клетками, т.е. через плотное соединение двух соседних клеток - это парацеллюлярный путь. Парацеллюлярная реабсорбция может осуществляться посредством диффузии или за счет переноса вещества вместе с растворителем. Второй путь реабсорбции - транцеллюлярный ("через" клетку). В этом случае реабсорбируемое вещество должно преодолеть две плазматические мембраны на своем пути из просвета канальца к интерстициальной жидкости - люминальную (или апекальную) мембрану, отделяющую жидкость в просвете канальца от цитоплазмы клеток, и базолатеральную (или контрлюминальную) мембрану, отделяющую цитоплазму от интерстициальной жидкости. Трансцеллюлярный транспорт определяется термином активный, для краткости, хотя пересечение, по меньшей мере, одной из двух мембран осуществляется посредством первично или вторично активного процесса. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида транспорта - первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Этот транспорт обеспечивается энергией получаемой непосредственно при расщеплении молекул АТФ. Примером служит транспорт ионов Na, который происходит при участии Na+,К+ АТФазы, использующей энергию АТФ. В настоящее время известны следующие системы первично активного транспорта: Na+, K+ - АТФаза; Н+-АТФаза; Н+,К+-АТФаза и Са+ АТФаза.
Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс, так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик + органическое вещество + Na+) способствует перемещению вещества через мембрану щеточной каемки и его поступление внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непосредственным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na+, К+ -АТФазы, локализованной в латеральных и базальных мембранах клетки. Реабсорбция Nа+ Cl- представляет наиболее значительный по объему и энергетическим затратам процесс.
Различные отделы почечных канальцев отличаются по способности всасывать вещества. С помощью анализа жидкостей из различных частей нефрона были установлены состав жидкости и особенности работы всех отделов нефрона.
Проксимальный каналец. В проксимальных извитых канальцах - реабсорбируется большая часть компонентов первичной мочи с эквивалентным количеством воды (объем первичной мочи уменьшается примерно на 2/3). В проксимальном отделе нефрона полностью реабсорбируются аминокислоты, глюкоза, витамины, необходимое количество белка, микроэлементы, значительное количество Na+, K+, Ca+, Mg+, Cl_, HCO2. Проксимальный каналец играет главную роль в возвращении всех этих профильтровавшихся веществ в кровь с помощью эффективной реабсорбции. Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой может выделяться незначительное ее количество (не более 130 мг). Глюкоза движется против градиента из просвета канальца через люминальную мембрану в цитоплазму посредством системы котранспорта с натрием. Это движение глюкозы опосредовано участием переносчика и является вторично активным транспортом, поскольку энергия, необходимая для осуществления движения глюкозы через люминальную мембрану, вырабатывается за счет движения натрия по его электрохимическому градиенту, т.е. посредством котранспорта. Данный механизм котранспорта столь мощный, что позволяет полностью всасывать всю глюкозу из просвета канальца. После проникновения в клетку глюкоза должна преодолеть базолатеральную мембрану, что происходит посредством независимой от участия натрия облегченной диффузии, это движение по градиенту поддерживается за счет высокой концентрации глюкозы, накапливающейся в клетке, вследствие активности люминального процесса котранспорта. Чтобы обеспечить активную трансцеллюлярную реабсорбцию, функционирует система: с наличием 2 мембран, которые асиметричны по отношению к присутствию переносчиков глюкозы; энергия выделяется только при преодолении одной мембраны, в данном случае люминальной. Решающий фактор, состоит в том, что весь процесс реабсорбции глюкозы зависит в конечном счете от первично активного транспорта натрия. Вторично активной реабсорбции при котранспорте с натрием через люминальную мембрану, тем же способом что и глюкоза реабсорбируются аминокислоты, неорганический фосфат, сульфат и некоторые органические питательные вещества. Необходимо обратить внимание на тот факт, что путь реабсорбции белка значительно отличается от способов всасывания питательных веществ, о которых шла речь выше. Низкомолекулярные белки реабсорбируются путем пиноцитоза в проксимальном сегменте. Реабсорбция белка начинается с эндоцитоза (пиноцитоза) на люминальной мембране. Этот энергозависимый процесс инициируется связыванием молекул профильтровавшегося белка со специфическими рецепторами на люминальной мембране. Обособленные внутриклеточные пузырьки, появившиеся в ходе эндоцитоза, сливаются внутри клетки с лизосомами, чьи ферменты расщепляют белки до низкомолекулярных фрагментов - дипептидов и аминокислот, которые удаляются в кровь через базолатеральную мембрану. Выделение белков с мочой в норме составляет не более 20 - 75 мг в сутки, а при заболевании почек оно может возрастать до 50 г в сутки (протеинурия ).
Увеличение выделения белков мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо фильтрации.
Неионная диффузия - слабые органические кислоты и основания плохо диссоциируют. Растворяются в липидном матриксе мембран и реабсорбируются по концентрационному градиенту. Степень их диссоциации зависит от рН в канальцах: при его снижении диссоциация кислотуменьшается, оснований повышается. Реабсорбция кислот увеличивается, оснований – уменьшается. При возрастании рН – наоборот. Это используют в клинике для ускорения выведения ядовитых веществ – при отравлении барбитуратами защелачивают кровь. Это увеличивает их содержание в моче.
Петля Генле. В петле Генле в целом всегда реабсорбируется больше натрия и хлора (около 25% фильтруемого количества), чем воды (10% объема профильтровавшейся воды). Это является важным отличием петли Генле от проксимального канальца, где вода и натрий реабсорбируются практически в равных пропорциях. Нисходящая часть петли не реабсорбирует натрий или хлор, но она обладает весьма высокой проницаемостью для воды и реабсорбирует ее. Восходящая же часть(как тонкий, так и толстый ее участок) реабсорбирует натрий и хлор и практически не реабсорбирует воду, поскольку она совершенно не проницаема для нее. Реабсорбция хлорида натрия восходящей частью петли отвечает за реабсорбцию воды в нисходящей ее части, т.е. переход хлорида натрия из восходящей части петли в интерстициальную жидкость увеличивает осмолярность этой жидкости, а это влечет за собой большую реабсорбцию воды посредством диффузии из водопроницаемой нисходящей части петли. Поэтому этот участок канальца получил название разводящий сегмент. В результате жидкость будучи уже гипоосмотичной в восходящей толстой части петли Генле(вследствие выхода натрия), поступает в дистальный извитой каналец, где продолжается процесс разведения и она становится еще более гипоосмотичной, так как в последующих отделах нефрона органические вещества не всасываются в них реабсорбируются только ионы и Н2О. Таким образом, можно утверждать, что дистальный извитой каналец и восходящая часть петли Генле функционируют как сегменты, где происходит разведение мочи. По мере продвижения по собирательной трубке мозгового вещества канальцевая жидкость становится все более и более гиперосмотичной, т.к. реабсорбция натрия и воды продолжается и в собирательных трубках, в них происходит формирование конечной мочи (концентрированной, за счет регулируемой реабсорбции воды и мочевины. Н2О переходит в интерстициальное вещество согласно законам осмоса, т.к. там более высокая концентрация веществ. Процент реабсорбции воды может широко варьировать в зависимости от водного баланса данного организма.
Дистальная реабсорбция. Факультативная, регулируемая.
Особенности:
1. Стенки дистального сегмента плохо проницаемы для воды.
2. Здесь активно реабсорбируется натрий.
3. Проницаемость стенок регулируется: для воды - антидиуретическим гормоном, для натрия - альдостероном.
4.Происходит процесс секреции неорганических веществ.
В дистальном сегменте происходит окончательное концентрирование мочи с помощью особого механизма – поворотно-противоточно-множительного.
Широко распространен в природе: в конечностях арктических животных кровь в параллельно расположенных артериях и венах течет таким образом, что теплая артериальная кровь согревает холодную венозную, возвращающуюся к сердцу (противоточный теплообменник). Поступление в стопу артериальной крови с низкой температурой ограничивает теплоотдачу.
Дата добавления: 2015-12-15 | Просмотры: 1094 | Нарушение авторских прав
|