Нейроны как основные структурно-функциональные элементы ЦНС. Симпатическая связь между нейронами.
ЦНС, функции, механизмы деятельности, классификация.
Нервную систему подразделяют на периферическую (нервные волокна и узлы) и центральную. ЦНС - основная часть нервной системы всех животных и человека, состоящая из скопления нервных клеток и их отростков.
К центральной нервной системе (ЦНС) относят спинной и головной мозг. Все важнейшие поведенческие реакции человека осуществляются с помощью ЦНС. Периферическую нервную систему составляют корешки, спинномозговые и черепные нервы, их ветви, сплетения и узлы, а также нервные окончания, лежащие в различных отделах тела человека, в его органах и тканях.
По другой, анатомо-функциональной, классификации единую нервную систему также условно подразделяют на две части: соматическую и автономную, или вегетативную. Соматическая нервная система обеспечивает иннервацию главным образом тела - сомы, а именно: кожи, скелетных (произвольных) мышц. Этот отдел нервной системы выполняет функции связи организма с внешней средой при помощи кожной чувствительности и органов чувств.
Автономная (вегетативная) нервная система иннервирует все внутренности, железы, в том числе эндокринные, непроизвольную мускулатуру органов, кожи, сосудов, сердца, а также регулирует обменные процессы во всех органах и тканях.
Автономная нервная система в свою очередь подразделяется на парасимпатическую и симпатическую части. В каждой из частей, как и в соматической нервной системе, выделяют центральный и периферический отделы.
В деятельности НС основным является рефлекторный механизм.
Основными функциями ЦНС являются:
• объединение всех частей организма в единое целое и их регуляция;
• управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.
У высших животных и человека ведущим отделом ЦНС является кора больших полушарий. Она управляет наиболее сложными функциями в жизнедеятельности человека — психическими процессами (сознание, мышление, речь, память и др.).
Нейроны как основные структурно-функциональные элементы ЦНС. Симпатическая связь между нейронами.
Основными структурными элементами нервной системы являются нервные клетки или нейроны.
Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (Таким образом, основными функциями нейронов являются: восприятие внешних раздражений — рецепторная функция, их переработка — интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы — эффекторная функция.) В теле нервной клетки, или соме, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки — дендриты (греч. дендрон — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток — аксон (греч. аксис — ось), который передает нервные импульсы дальше — другой нервной клетке или рабочему органу (мышце, железе). Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.
Нейроны подразделяются на три основных типа: афферентные, эфферентные и промежуточные. Афферентные нейроны (чувствительные, или центростремительные) передают информацию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС — в спинномозговых узлах и в узлах черепных нервов. Афферентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с воспринимающим образованием — рецептором или сам образует рецептор, а также второй отросток — аксон, входящий через задние рога в спинной мозг.
Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эфферентных нейронов характерны разветвленная сеть коротких отростков — дендритов и один длинный отросток—аксон.
Промежуточные нейроны (интернейроны, или вставочные) — это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении (например, в пределах одного сегмента спинного мозга) и в вертикальном (например, из одного сегмента спинного мозга в другие — выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.
Взаимодействие нейронов между собой (и с эффекторными органами) происходит через специальные образования — синапсы (греч. — контакт). Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у нейронов с наиболее сложными функциями.
В структуре синапса различают три элемента (рис. 2):
1) пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона;
2) синаптическую щель между нейронами;
3)постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона.
Рис. 2. Схема синапса
Пре. — пресинаптическая
мембрана, Пост. — постсинаптическая
мембрана,
С — синоптические пузырьки,
Щ—синоптическая щель,
М — митохондрий,
Ах — ацетилхолин
Р — рецепторы и поры (Поры)
дендрита (Д) следующего
нейрона.
Стрелка — одностороннее проведение возбуждения.
В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синоптические пузырьки, которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель.
По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсы.
Ввозбуждающих синапсах медиаторы (например, ацетилхолин) связываются со специфическими макромолекулами постсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1мс) колебание мембранного потенциала в сторону делоляризации ил и возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня. Для этого величина деполяризационного сдвига мембранного потенциала должна составлять не менее 10 мВ. Действие медиатора очень кратковременно (1 -2 мс), после чего он расщепляется на неэффективные компоненты (например, ацетилхолин расщепляется ферментом холинэстеразой на холин и уксусную кислоту) ил и поглощается обратно пресинаптическими окончаниями (например, норадреналин).
В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их действие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного потенциала в сторону гиперполяризации — тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого понадобится более сильное раздражение, чтобы достичь критического уровня деполяризации.
В рефлекторных дугах происходит контакт между нейронами в форме синапсов. Синапсы в центральной нервной системе образуются при контакте отростков одного нейрона с другим. Поскольку сигнал от нейрона распространяется к аксону, то аксон включается в контакт, и он может заканчиваться на теле другой клетки - аксосоматический контакт.
Аксон может заканчиваться на дендритах - аксодендритный синапс.
Аксон может заканчиваться на аксоне другой клетки - аксоаксональный синапс.
Синапсы могут быть простыми и сложными.
По функции синапсы делятся на возбуждающие и тормозные.
Синапсы могут быть электрическими и химическими.
Для синапсов ЦНС характерна более узкая межсинаптическая щель (15-25 нм).
В синапсах имеются пузырьки с медиатором разного размера. Могут одновременно содержаться разные медиаторы.
Передача возбуждения через синапс происходит при распространении потенциала действия на пресинаптическую мембрану, что вызывает ее деполяризацию, и это является причиной открытия кальциевых каналов. Кальций проникает в пресинаптическую мембрану, вызывая активацию мембранных пузырьков с медиатором, которые воздействуют на рецепторы, связанные с ионными каналами. На постсинаптической мембране возникает процесс деполяризации и образуется возбуждающий постсинаптический потенциал.
Свойства:
1. Не подчиняется закону все или ничего
2. Зависит от количества медиаторов
3. Способен суммироваться
4. Распространяется ограниченно на небольшое расстояние, и при достижении критического уровня способен вызвать потенциал действия. Потенциал действия будет возникать в аксонном холмике.
Количество синапсов в рефлекторной дуге будет влиять на время рефлекса.
Время рефлекса - время от момента нанесения раздражения до ответной реакции.
Самое короткое время рефлекса в моносинаптических дугах. При наличии вставочных нейронов время рефлекса значительной увеличится.
Центральное время рефлекса - время переключения с чувствительного на двигательный нейрон. Так же зависит от количества вставочных нейронов.
З. Рефлекторная дуга, ее основные части. Элементарные двигательные рефлексы у человека.
В деятельности нервной системы основным является рефлекторный механизм. Рефлекс — это ответная реакция организма на внешнее раздражение, осуществляемая с участием нервной системы.
Нервный путь рефлекса называется рефлекторной дугой. В состав рефлекторной дуги входят: 1) воспринимающее образование — рецептор, 2) чувствительный или афферентный нейрон, связывающий рецепторе нервными центрами, 3) промежуточные (или вставочные) нейроны нервных центров, 4) эфферентный нейрон, связывающий нервные центры с периферией, 5) рабочий орган, отвечающий на раздражение — мышца или железа.
Наиболее простые рефлекторные дуги включают всего две нервные клетки, однако множество рефлекторных дуг в организме состоят из значительного количества разнообразных нейронов, расположенных в различных отделах центральной нервной системы. Выполняя ответные реакции, нервные центры посылают команды к рабочему органу (например, скелетной мышце) через эфферентные пути, которые выполняют роль так называемых к а н а л о в прямой связи. В свою очередь, в ходе осуществления рефлекторного ответа или после него рецепторы, находящиеся в рабочем органе, и другие рецепторы тела посылают в центральную нервную систему информацию о результате действия. Афферентные пути этих сообщений — каналы обратной связи. Полученная информация используется нервными центрами для управления дальнейшими действиями, т. е. прекращением рефлекторной реакции, ее продолжением или изменением. Следовательно, основу целостной рефлекторной деятельности составляет не отдельная рефлекторная дуга, а замкнутое рефлекторное кольцо, образованное прямыми и обратными связями нервных центров с периферией.
Рефлекторная дуга – это путь, по которому проходит рефлекс. Дуга имеет 5 сведений: рецептор, чувствительный, вставочный, двигательный, эффектор. Рецептор – окончание дендрита чувствительного нейрона. Эффектор – окончание аксонов двигательных нейронов. Он совершает ответную реакцию. При сложных движениях человека используются элементарные двигательные рефлексы, осуществляемые спинным мозгом.
Дата добавления: 2015-12-15 | Просмотры: 1511 | Нарушение авторских прав
|