АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Пути образования и обезвреживания аммиака.

Прочитайте:
  1. B) нуклеотидов и образования двухцепочечной молекулы ДНК
  2. II. Обучающий симуляционный курс (ОСК.И.00) послевузовского профессионального образования врачей по специальности «Педиатрия»
  3. Анатомические образования в преддверии полости рта.
  4. В раннем периоде кистообразования после воспалительных, травматических
  5. Верно ли, что одной из причин образования дивертикула мочевого пузыря является неполная облитерация урахуса?
  6. ВНД. Физиологические механизмы образования условных рефлексов. Роль условных рефлексов в приспособлении организма к изменениям во внешней и внутренней среде.
  7. Вопрос 16 Основные учения о ВНД. Условные рефлексы. Правила и механизм образования.
  8. Вопрос 6: Этиология и патогенез новообразования.
  9. Вопрос № 9. « Механизм мочеобразования »
  10. ВОПРОС №17: МЕОЙЗ КАК ЦИТОЛОГИЧЕСКАЯ ОСНОВА ОБРАЗОВАНИЯ ПОЛОВЫХ КЛЕТОК. СТАДИИ МЕЙОЗА.

2.2.1. Аммиак (NН3) – продукт обмена большинства соединений, содержащих амино- и амидогруппы. Главным путём образования аммиака служит окислительное дезаминирование.

Аммиак – очень токсичное вещество, особенно для нервной системы. При физиологических значениях рН молекула NН3 легко превращается в ион аммония NН4+, который не способен проникать через биологические мембраны и задерживается в клетке. Накопление NН4+ вызывает торможение заключительных этапов цикла трикарбоновых кислот и снижение продукции АТФ. Поэтому в организме существует ряд механизмов связывания (обезвреживания) аммиака (см. рисунок 2.3).

Рисунок 2.3. Образование аммиака в организме и его обезвреживание.

2.2.2. Образование транспортных форм аммиака в тканях. Аммиак, образующийся в тканях, сначала превращается в нетоксичное соединение и в таком виде переносится кровью к печени или почкам. Такими транспортными формами являются аминокислоты глутамин, аспарагин и аланин.

Образование глутамина и аспарагина из глутамата и аспартата соответственно происходит во многих тканях, включая головной мозг:

Глутамин - нейтральное нетоксичное соединение, способное легко проходить через клеточные мембраны. В виде этой аминокислоты аммиак транспортируется в крови. В крови здоровых людей содержание глутамина существенно превышает содержание других аминокислот. Глутамин, помимо участия в синтезе белка, служит источником азота в биосинтезе гистидина, глюкозамина, пуриновых и пиримидиновых нуклеотидов. С кровью глутамин поступает в печень и почки. Здесь он под действием фермента глутаминазы превращается в глутамат и аммиак. При участии аспарагиназы также происходит образование аммиака из аспарагина.

Аланин является транспортной формой аммиака, которая образуется преимущественно в мышцах. При интенсивной физической нагрузке источниками аммиака служат реакции дезаминирования аминокислот и аденозинмонофосфата (АМФ). Сначала аммиак превращается в аминогруппу глутамата в реакции восстановительного аминирования (см. параграф 2.1.2), катализируемой глутаматдегидрогеназой:

Образовавшийся глутамат переносит затем свою α-аминогруппу на пируват, всегда имеющийся в достаточном количестве, поскольку это продукт протекающего в мышцах гликолиза. Реакция катализируется аланинаминотрансферазой.

Глутамат + Пируват α-Кетоглутарат + Аланин

Аланин (нейтральная аминокислота, не несущая суммарного заряда при значениях рН, близких к 7) выходит из клеток и доставляется кровью к печени. Здесь он под действием аланинаминотрансферазы передаёт свою аминогруппу α-кетоглутарату, в результате чего образуется глутамат.

α-Кетоглутарат + Аланин Глутамат + Пируват

Далее в реакции, катализируемой глутаматдегидрогеназой, глутамат дезаминируется с образованием α-кетоглутарата и аммиака, который в печени превращается в мочевину.

2.2.3. Экскреция аммиака с мочой. Клетки почек поглощают из циркулирующей крови глутамин. Фермент глутаминаза в почках катализирует гидролиз глутамина с образованием глутамата и аммиака.

Образующийся глутамат может в дальнейшем подвергаться дезаминированию при участии глутаматдегидрогеназы. Таким образом, из одной молекулы глутамина всего может образоваться две молекулы аммиака.

Аспарагин аналогичным образом подвергается гидролизу при участии аспарагиназы, присутствующей в клетках канальцев почек.

Аммиак секретируется в просвет почечных канальцев и выводится в виде солей минеральных и органических кислот, например:

3 + НСl 4Сl
хлорид аммония

Образование солей аммония в почечных канальцах является важным механизмом регуляции кислотно-основного состояния организма. Оно резко возрастает при метаболическом ацидозе - накоплении в организме кислот и снижается при потере кислот организмом (алкалозе).

2.2.4. Биосинтез мочевины – основной путь обезвреживания аммиака. Мочевина синтезируется в орнитиновом цикле, протекающем в клетках печени. Эту последовательность реакций открыли Х.Кребс и К.Хензелейт в 1932 г. Согласно современным представлениям, цикл мочевины включает последовательность пяти реакций.

Две начальные реакции биосинтеза мочевины происходят в митохондриях клеток печени.

Последующие реакции протекают в цитоплазме клеток печени.

Общая схема орнитинового цикла представлена на рисунке 2.4:

Рисунок 2.4. Схема орнитинового цикла и его связь с превращениями фумаровой и аспарагиновой кислот.
Цифрами обозначены ферменты, катализирующие реакции орнитинового цикла: 1 – карбамоилфосфатсинтетаза; 2 – орнитин-карбамоилтрансфераза; 3 – аргининосукцинатсинтетаза; 4 – аргининосукцинатлиаза; 5 – аргиназа.

2.2.5. Орнитиновый цикл находится в тесной взаимосвязи с циклом трикарбоновых кислот:

1. пусковые реакции цикла мочевины, как и реакции ЦТК, протекают в митохондриальном матриксе;

2. поступление СО2 и АТФ, необходимых для образования мочевины, обеспечивается работой ЦТК;

3. в цикле мочевины образуется фумарат, который является одним из субстратов ЦТК. Фумарат гидратируется в малат, который в свою очередь окисляется в оксалоацетат. Оксалоацетат может подвергаться трансаминированию в аспартат; эта аминокислота участвует в образовании аргининосукцината.

2.2.6. Регуляция активности ферментов цикла осуществляется главным образом на уровне карбамоилфосфатсинтетазы, которая малоактивна в отсутствие своего аллостерического активатора - N-ацетил-глутамата. Концентрация последнего зависит от концентрации его предшественников (ацетил-КоА и глутамата), а также аргинина, который является аллостерическим активатором N-ацетилглутаматсинтазы:

Ацетил-КоА + Глутамат N-ацетилглутамат + КоА-SH

Концентрация ферментов орнитинового цикла зависит от содержания белка в пищевом рационе. При переходе на диету, богатую белком, в печени повышается синтез ферментов орнитинового цикла. При возвращении к сбалансированному рациону концентрация ферментов снижается. В условиях голодания, когда усиливается распад тканевых белков и использование аминокислот как энергетических субстратов, возрастает продукция аммиака, концентрация ферментов орнитинового цикла увеличивается.

2.2.7. Нарушения орнитинового цикла. Известны метаболические нарушения, обусловленные частичным блокированием каждого из 5 ферментов, катализирующих в печени реакции синтеза мочевины, а также N-ацетилглутаматсинтазы. Эти генетические дефекты, очевидно, являются частичными. Полное блокирование какой-либо из стадий цикла мочевины в печени, по-видимому, несовместимо с жизнью, потому что другого эффективного пути удаления аммиака не существует.

Общим признаком всех нарушений синтеза мочевины является повышенное содержание NH4+ в крови (гипераммониемия). Наиболее тяжёлые клинические проявления наблюдаются при дефекте фермента карбамоилфосфатсинтетазы. Клиническими симптомами, общими для всех нарушений цикла мочевины, являются рвота, нарушение координации движений, раздражительность, сонливость и умственная отсталость. Если заболевание не диагностируется, то быстро наступает гибель. У детей старшего возраста проявлениями заболевания служат повышенная возбудимость, увеличение размеров печени и отвращение к пище с высоким содержанием белка.

Лабораторная диагностика заболеваний включает определение содержания аммиака и метаболитов орнитинового цикла в крови, моче и спинномозговой жидкости; в сложных случаях прибегают к биопсии печени.

Значительное улучшение наблюдается при ограничении белка в диете, при этом могут быть предотвращены многие нарушения мозговой деятельности. Малобелковая диета приводит к снижению содержания аммиака в крови и к улучшению клинической картины при мягких формах этих наследственных нарушений. Пищу следует принимать часто, небольшими порциями, для того чтобы избежать резкого повышения уровня аммиака в крови.

2.2.8. Клинико-диагностическое значение определения мочевины в крови и моче. В крови здорового человека содержание мочевины составляет 3,33 – 8,32 ммоль/л. За сутки с мочой выводится 20 – 35 г мочевины.

Изменения содержания мочевины в крови при заболеваниях зависят от соотношения процессов её образования в печени и выведения почками. Повышение содержания мочевины в крови (гиперазотемия) отмечается при почечной недостаточности, снижение – при недостаточности печени, при диете с низким содержанием белков.

Повышение экскреции мочевины с мочой наблюдается при употреблении пищи с высоким содержанием белков, при заболеваниях, сопровождающихся усилением катаболизма белков в тканях, при приёме некоторых лекарств (например, салицилатов). Снижение экскреции мочевины с мочой характерно для заболеваний и токсических поражений печени, заболеваний почек, сопровождающихся нарушением их фильтрационной способности.

Контрольные вопросы:

1. Напишите реакцию трансаминирования между аспарагиновой и α–кетоглутаровой кислотами, укажите название фермента и кофермента. Какова биологическая роль трансаминирования?

2. Напишите реакцию трансаминирования между аланином и α–кетоглутаровой кислотой, укажите название фермента и кофермента. Как связана эта реакция с общим путём катаболизма?

3. Напишите реакции прямого окислительного дезаминирования аминокислот. Назовите фермент, его активаторы и ингибиторы.

4. Представьте в виде схемы последовательность реакций непрямого дезаминирования аланина. Укажите биологическую роль этого процесса.

5. Напишите реакцию декарбоксилирования гистидина, укажите фермент, продукт реакции и его биологическую роль.

6. Напишите реакцию декарбоксилирования глутаминовой кислоты, укажите фермент, продукт реакции и его биологическую роль.

7. Напишите реакцию декарбоксилирования 5-гидрокситриптофана, укажите фермент, продукт реакции и его биологическую роль.

8. Напишите формулу пиридоксальфосфата. Производным какого витамина он является? В каких типах реакций он участвует?

9. Перечислите основные источники аммиака в организме человека и пути его обезвреживания.

10. Напишите реакцию восстановительного аминирования α–кетоглутарата, укажите название фермента и его биологическую роль.

11. Напишите реакцию образования глутамина, укажите название фермента и локализацию в организме.

12. Напишите реакцию образования аспарагина, укажите название фермента и локализацию в организме.

13. Напишите реакцию образования карбамоилфосфата, укажите название фермента. Назовите вещества, являющиеся непосредственными источниками атомов азота молекулы мочевины.

14. Напишите реакцию образования цитруллина, укажите название фермента и его тканевую и внутриклеточную локализацию.

15. Напишите реакцию образования аргининосукцината, укажите название фермента и связь этой реакции с процессами трансаминирования.

16. Напишите реакцию расщепления аргининосукцината, укажите название фермента и связь этой реакции с циклом Кребса.

17. Напишите реакцию образования мочевины из аргинина, укажите фермент. Сколько молекул АТФ затрачивается для синтеза одной молекулы мочевины.

18. Напишите формулу мочевины. Как и почему изменяется содержание мочевины в крови и моче при заболеваниях печени и почек?

 


Дата добавления: 2015-12-15 | Просмотры: 1041 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)