АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Нуклеотидные последовательности в геноме эукариот

Прочитайте:
  1. I. Клеточный цикл эукариот
  2. В какой последовательности выделяют почки из жировой капсулы при нефрэктомии?
  3. В мембранах эукариот
  4. В чем заключается суть кепування и поліаденілювання? Какое значение допускается для кепа и поліаденілової последовательности в процессе трансляции?
  5. В. Польовий рентгенометр-радіометр дп-5а або дп-5в
  6. ВОПРОС №48: ОСОБЕННОСТИ РЕПЛИКАЦИИ РАЗЛИЧНЫХ ГЕНОМОВ У ПРО- И ЭУКАРИОТ.
  7. ВОПРОС №59: ОСОБЕННОСТИ СТРОЕНИЯ ГЕНОВ У ПРО- И ЭУКАРИОТ. СТРОЕНИЕ ОПЕРОНОВ.
  8. Генетические основы матричного синтеза белка в клетке: особенности транскрипции у прокариот и эукариот, понятие о прямой и обратной транскрипции, процесс трансляции.
  9. Геном эукариот
  10. Гомология в строении клеток про- и эукариот.

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фунда­ментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с по­мощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.

1. Уникальные, т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2. Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3. Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) некодирующие последовательности, которые входят в состав прицентромерного гетерохроматина.

ДНК мышей на 70% состоит из уникальных последовательностей, на 20% – из низкочастотных и среднечастотных повторов, на 10% – из высокочастотных.

Повторы образуют так называемые семейства, под которыми понимают совокупность последовательностей, полностью или по большей части гомологичных друг другу.

Нередко из-за существенных различий в нуклеотидном составе высокочастотных повторов и остальной ДНК пер­вые образуют при центрифугировании в градиенте плот­ности хлористого цезия так называемые сателлитные пики, которые имеют большую или меньшую плавучую плотность, чем остальная ДНК. Эта фракция генома пред­ставлена небольшим (10…15) числом семейств коротких (5…12 п.н.) повторов, образующих протяженные блоки. Внутри блоков группы повторов отдельных семейств могут чередоваться друг с другом, так что сателлитная ДНК имеет как бы лоскутную структуру. Гибридизация фракций высокочастотных последовательностей с ДНК непосред­ственно на препаратах хромосом позволила установить, что эта фракция генома локализована в районах конститутивного гетерохроматина, чаще всего прицентромерного или теломерного. Еще в 30-х годах было показано, что в генетическом отношении эти районы инертны, т. е. не содержат генов. В действительности столь малые после­довательности, составляющие сателлитную ДНК, не могут кодировать ничего, кроме олигопептидов. Более того, гетерохроматические районы не транскрибируются. Таким образом, в случае высокочастотных последовательностей ДНК обнаруживается тождество молекулярной организации и генетических свойств хромосомной ДНК эукариот. Следует отметить, что эта фракция у огромного большинства видов занимает не более 10% генома. Близкие виды, например мышь и крыса, имеют совершенно различ­ные высокочастотные последовательности, у крысы их нуклеотидный состав не отличается от основной ДНК, тогда как геном мыши содержит четкий АТ-богатый сател­лит. Это означает, что высокочастотная ДНК способна к быстрым изменениям в ходе видообразования.

Остальные 90 % генома эукариот, его эухроматическая часть, построены по принципу чередования (интерсперсии) уникальных и повторяющихся последовательностей. Условно выделяют два основных типа интерсперсии, полу­чивших названия по тем видам, у которых они впервые были описаны: интерсперсия типа «ксенопус» (обнару­жена у шпорцевой лягушки Xenopus laevis) и типа «дрозофила» (впервые описана у плодовой мушки D. melanogaster). Примерно в 50 % генома Xenopus laevis уникальные последовательности из 800…1200 п.н. чередуются с повторяющимися, средний размер которых 300 п.н. В остальной части геномов типа «ксенопус» расстояния между соседними повторами значительно превышают 1…2 п.н. Структура генома типа «ксенопус» широко распространена, особенно среди жи­вотных. Млекопитающие и человек также относятся к этому типу организации генома. Особенность генома человека и других приматов составляют интерсперсные высокоча­стотные повторы длиной около 300 п.н. У человека эти повторы содержат сайт, разрезаемый ферментом рестрик­ции Alu I. Число Alu-подобных повторов в геноме человека достигает 5×105, а по некоторым данным, даже 106.

Alu-подобные последовательности приматов представ­ляют собой частичные дупликации (удвоения) последо­вательности В1 в геноме грызунов, впервые описанной Г. П. Георгиевым и его сотрудниками.

У D. melanogaster параметры интерсперсии резко от­личаются от видов с типом генома «ксенопус»: повторяю­щиеся последовательности длиной 5600 п.н. чередуются с уникальными, длина которых не менее 13000 п.н. Инте­ресно отметить, что у домашней мухи геном устроен по типу «ксенопус». Этот факт прямо указывает на то, что в ходе эволюции возможны очень быстрые преобразования характера чередования последовательностей и в эухроматической части генома. Птицы по параметрам интерс­персии занимают промежуточное положение между типом «ксенопус» и типом «дрозофила». Как показывают резуль­таты исследований последних лет, многие виды животных и растений по организации генома не могут быть строго отнесены ни к тому, ни к другому типу. Так, в геномах мле­копитающих встречаются длинные повторы – в несколько тысяч пар нуклеотидов, в геномах лилейных до 90% ДНК может быть представлено повторяющимися последова­тельностями. Например, геном гороха не содержит уни­кальных последовательностей, превышающих по длине 300 п.н.

Другая особенность повторяющихся последовательно­стей в геномах эукариот – инвертированные повторы, или палиндромы (см. ниже). В условиях ренатурации они практически мгновенно формируют дуплексные структуры. По существу, палиндромы представляют собой часть про­межуточных повторов. Однако некоторые высокочастот­ные повторы в эухроматической части генома, например члены Alu-семейств, могут встречаться как в прямом, так и в инвертированном положении. Иногда между инвер­тированными повторами вклиниваются другие последо­вательности.


Дата добавления: 2015-12-16 | Просмотры: 822 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)