Строение гена у про- и эукариот.
Организация генома прокариот. Прокариоты. Геном прокариот. Лактозный оперон
Прокариоты – это организмы, в клетках которых отсутствует оформленное ядро. Его функции выполняет нуклеоид (то есть «подобный ядру»); в отличие от ядра, нуклеоид не имеет собственной оболочки.
Тело прокариот, как правило, состоит из одной клетки. Однако при неполном расхождении делящихся клеток возникают нитчатые, колониальные и полинуклеоидные формы (бактероиды). В прокариотических клетках отсутствуют постоянные двумембранные и одномембранные органоиды: пластиды и митохондрии, эндоплазматическая сеть, аппарат Гольджи и их производные. Их функции выполняют мезосомы – складки плазматической мембраны. В цитоплазме фотоавтотрофных прокариот имеются разнообразные мембранные структуры, на которых протекают реакции фотосинтеза. Иногда их называют бактериальными хроматофорами.
Специфическим веществом клеточной стенки прокариот является муреин, однако у некоторых прокариот муреин отсутствует. Поверх клеточной стенки часто имеется слизистая капсула. Пространство между мембраной и клеточной стенкой служит резервуаром протонов при фотосинтезе и аэробном дыхании.
Размеры прокариотических клеток изменяются от 0,1-0,15 мкм (микоплазмы) до 30 мкм и более. Большинство бактерий имеет размеры 0,2-10 мкм. У подвижных бактерий имеются жгутики, основой которых служит белки флагеллины.
Организация генома прокариот (на примере кишечной палочки)
Основу генетического аппарата кишечной палочки составляет бактериальная хромосома, входящая в состав нуклеоида – ядерноподобной структуры. Нуклеоид по морфологии напоминает соцветие цветной капусты и занимает примерно 30% объема цитоплазмы. Бактериальная хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Длина бактериальной хромосомы составляет примерно 4,7 млн. нуклеотидных пар (п.н.), или ~ 1,6 мм. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название OriC). Бактериальная хромосома удваивается перед делением клетки, и сестринские копии распределяются по дочерним клеткам с помощью мезосомы. Репликация ДНК идет в две стороны от точки OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны.
Одна бактериальная хромосома содержит до 1000 известных генов. Обычно это гены «домашнего хозяйства», то есть необходимые для поддержания жизнедеятельности клетки.
Все множество известных генов делится на 10 групп, контролирующих следующие процессы (в скобках указано количество изученных генов):
1. Транспорт различных соединений и ионов в клетку (92).
2. Реакции, поставляющие энергию, включая катаболизм различных природных соединений (138).
3. Реакции синтеза аминокислот, нуклеотидов, витаминов, компонентов цепей переноса электронов, жирных кислот, фосфолипидов и некоторых других соединений (221).
4. Генерация АТФ при переносе электронов (15).
5. Катаболизм макромолекул (22).
6. Аппарат белкового синтеза (164).
7. Синтез нуклеиновых кислот, включая гены, контролирующие рекомбинацию и репарацию (49).
8. Синтез клеточной оболочки (42).
9. Хемотаксис и подвижность (39).
10. Прочие гены, в том числе с неизвестной функцией (110).
В лаг–фазе в клетке имеется одна бактериальная хромосома, но в фазе экспоненциального роста ДНК реплицируется быстрее, чем происходит деление клетки; тогда число бактериальных хромосом на клетку увеличивается до 2...4...8. Такое состояние генетического аппарата называется полигаплоидностью.
При делении клетки сестринские копии бактериальной хромосомы распределяются по дочерним клеткам с помощью мезосомы.
Кроме бактериальной хромосомы в состав генетического аппарата прокариот входит множество мелких репликонов – плазмид – кольцевых молекул ДНК длиной в тысячи п.н. Плазмиды такого размера содержат несколько десятков генов. Обычно это «гены роскоши», обеспечивающие устойчивость к антибиотикам, тяжелым металлам, кодирующие специфические токсины, а также гены конъюгации и обмена генетическим материалом с другими особями. Известны также мелкие плазмиды длиной 2...3 тпн, кодирующие не более 2 белков. У многих бактерий открыты мегаплазмиды длиной порядка миллиона пн, то есть немногим меньше бактериальной хромосомы. Плазмиды могут быть прикреплены к мезосомам, могут находиться в автономном состоянии и в интегрированном состоянии. В последнем случае плазмида включается в состав бактериальной хромосомы в определенных точках attB. Таким образом, одна и та же плазмида может включаться в состав хромосомы и может вырезаться из нее. Существуют плазмиды, представленные одной копией – они реплицируются синхронно с ДНК бактериальной хромосомы. Другие плазмиды могут быть представлены многими копиями, и их репликация происходит независимо от репликации бактериальной хромосомы. Репликация свободных плазмид часто протекает по принципу «катящегося кольца» – с одной кольцевой матрицы ДНК считывается «бесконечная» копия.
Репликация плазмид может быть синхронизирована с репликацией бактериальной хромосомы, но может быть и независимой. Соответственно, распределение плазмид по дочерним клеткам может быть точным или статистическим.
Дата добавления: 2015-12-16 | Просмотры: 689 | Нарушение авторских прав
|