АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Первичная зрительная кора

Прочитайте:
  1. Асфиксия новорожденного. Определение. Этиология. Классификация. Клиническая картина. Первичная и реанимационная помощь.
  2. Вторичная (экстрастриарная) зрительная кора
  3. Зрительная сенсорная система
  4. Зрительная сенсорная система
  5. Зрительная сенсорная система.
  6. Зрительная сенсорная система.
  7. Зрительная сенсорная система.
  8. Зрительная сенсорная система. Общая характеристика её отделов. Показатели зрения
  9. Зрительная система
  10. Зрительная система.

Информация к зрительной коре поступает от сетчатки глаз, где в ответ на действие квантов света возникают гиперполяризующие рецепторные потенциалы её фоторецепторных клеток – палочек и колбочек, которые при посредстве биполярных клеток возбуждают ганглиозные. Длинные аксоны ганглиозных клеток образуют зрительные нервы. У каждой ганглиозной клетки есть своё округлое рецептивное поле, состоящее из двух антагонистических зон: центральной и периферической. Одна из них возбуждается при попадании на фоторецепторы света (on-клетки), другая – при затемнении (off-клетки) – таким образом каждое рецептивное поле воспринимает контраст между освещённым и затемнённым участками зрительного поля (Рис. 9.4). Примерно в половине рецептивных полей on-клетки расположены в центре, а off-клетки – на периферии, в другой половине рецептивных полей эти зоны меняются местами. При участии тормозных клеток, осуществляющих латеральное торможение, сетчатка выделяет такие признаки попавшего в поле зрения объекта, как форма, цвет и характер движения. Эти субмодальности перерабатываются параллельно.

Идущие от сетчатки зрительные нервы частично перекрещиваются и передают информацию латеральному коленчатому телу, являющемуся составной частью таламуса; при этом переключении сохраняется принцип ретинотопической организации. Отсюда информация передаётся к первичной зрительной коре, причём сигналы поступают к входным звёздчатым клеткам IV слоя первичной зрительной коры, а от них к расположенным поблизости пирамидныым нейронам, которые называют простыми потому, что они активируются линейными стимулами определённой ориентации, воспринятыми фоторецепторными клетками сетчатки (рис. 9.5).

Здесь по-прежнему соблюдается ретинотопический принцип, т.е. определённым рецептивным полям сетчатки соответствует общее рецептивное поле, образованное простыми нейронами зрительной коры. Однако это поле имеет не округлую, характерную для сетчатки, а вытянутую в длину форму, в котором находятся как on-, так и off- чувствительные клетки, отвечающие либо на появление света, либо на его исчезновение..

Если рецептивное поле сетчатки равномерно освещается, то простые нейроны коры не активны. Когда же в зрительном рецептивном поле появляется раздражитель в виде светлой полосы на тёмном фоне или тёмной полосы – на светлом, или в виде грани между светлым и тёмным, простые нейроны активируются. Разные рецептивные поля, образованные простыми клетками зрительной коры, различаются способностью реагировать на определённый наклон появившейся в поле зрения полосы. Существует около 20 популяций простых нейронов, отличающихся одна от другой тем, что реагируют на разные углы наклона линейного стимула: одни на вертикальные, другие на горизонтальные, третьи – на наклонённые под разными углами. Каждая популяция различает угол наклона стимула в пределах около 10° – на определённый ("свой") угол наклона она даёт самый сильный ответ.

Если простые нейроны зрительной коры располагаются в IV слое, то клетки другой разновидности – комплексные нейроны облюбовали для себя 2, 3, 5 и 6 слои коры. Некоторые из комплексных нейронов активируются входными звёздчатыми клетками из IV слоя, но большинство из них получают информацию от ближайших простых нейронов, примыкающих к четвёртому слою. У комплексных нейронов одинаковая с их простыми соседями способность давать особенно сильный ответ на линейный стимул с определённым углом наклона. Но их рецептивное поле существенно больше, чем у простых нейронов, поскольку к одному комплексному нейрону конвергируют сразу несколько простых. Кроме того, комплексные нейроны почти не придают значения чётким границам между светлым и тёмным: внутри их большого рецептивного поля on- и off- зоны уже не играют важной роли. Зато многие комплексные клетки специализируются на переработке информации о характере движения стимула: например, одни сильнее активируются, когда объект появляется в поле зрения, другие – когда он из него уходит. В результате совместной деятельности простых и комплексных клеток происходит определение контуров и формы сложного объекта.

Простые и комплексные клетки со сходными свойствами, т.е. предпочитающие определённый угол наклона линейного стимула, объединяются в вертикальные колонки (рис 9.6).

Каждая колонка, ориентированная на определённый наклон стимула, в своём IV слое имеет концентрические рецептивные поля, а над и под ними однородную популяцию простых нейронов. Простые нейроны передают информацию комплексным клеткам из своей колонки, есть в колонке и тормозные нейроны. Ориентированная на определённый угол наклона стимула колонка имеет диаметр около 30-100 мкм. Соседние с нею колонки ориентированы на другой угол наклона, отличающийся примерно на 10°. Смежные колонки, располагаясь радиально, образуют суперколонку или модуль. Он содержит набор колонок, необходимых для ориентации в пределах 360°, а также размещённые между ними вставки нейронов, специализирующихся на переработке информации о цветовых характеристиках стимула. Такие клетки удаётся обнаружить по высокой концентрации в них митохондриального фермента – цитохромоксидазы; эти клетки отсутствуют в IV слое, а для обозначения их скоплений используют термин blobs – капли.

Больше половины комплексных нейронов ретинотопически организованной зрительной коры реагирует на информацию от обоих глаз, в каждом из которых соответствующие рецептивные поля занимают одинаковое положение. Для таких бинокулярных клетки важно, чтобы один глаз подтвердил то, что увидел другой; они сильнее возбуждается при стимуляции обоих глаз. У большинства бинокулярных клеток обнаружена глазодоминантность: на сигналы от одного глаза они реагируют сильнее, чем от другого. Сигналы от каждого глаза, чередуясь, поступают к клеткам IV слоя независимо друг от друга.

Соседние ориентированные колонки имеют между собой горизонтальные связи. Эти соединения обеспечивают синхронность возбуждения клеток коры, что очень важно для интеграции перерабатываемой информации, соединения данных отдельных рецептивных полей в цельный образ. Однако первичная зрительная кора является только первой ступенью переработки информации, которая продолжается уже за пределами этой области.


Дата добавления: 2015-12-15 | Просмотры: 717 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)