АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
ВОСПРОИЗВЕДЕНИЕ КЛЕТОК
Клеточный цикл
Один из постулатов клеточной теории гласит, что увеличение числа клеток, их размножение происходят путем деления исходной клетки. Обычно делению клеток предшествует редупликация их хромосомного аппарата, синтез ДНК. Это правило является общим для прокариотических и эукариотических клеток. Время существования клетки как таковой, от деления до деления или от деления до смерти, обычно называют клеточным циклом.
Во взрослом организме высших позвоночных клетки различных тканей и органов имеют неодинаковую способность к делению. Встречаются популяции клеток, полностью потерявшие свойство делиться. Это большей частью специализированные, дифференцированные клетки (например, зернистые лейкоциты крови). В организме есть постоянно обновляющиеся ткани — различные эпителии, кроветворные ткани. В таких тканях существует часть клеток, которые постоянно делятся, заменяя отработавшие или погибающие клеточные типы (например, клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга). Многие клетки, не размножающиеся в обычных условиях, приобретают вновь это свойство при процессах репаративной регенерации органов и тканей. Размножающиеся клетки обладают разным количеством ДНК в зависимости от стадии клеточного Цикла. Это наблюдается при размножении как соматических, так и половых клеток.
Как известно, половые мужские и женские клетки несут единичный (гаплоидный) набор хромосом и, следовательно, содержат в 2 раза меньше ДНК. чем все остальные клетки организма. Такие половые клетки (сперматозоиды и овоциты) с единичным набором хромосом называют гаплоидными. Плоидность обозначают буквой n. Так, клетки с 1 n гаплоидны, с 2 n диплоидны, с 3 n триплоидны и т. д. Соответственно количество ДНК на клетку (с) зависит от ее плоидности: клетки с 2 n числом хромосом содержат 2 с количества ДНК. При оплодотворении происходит слияние двух клеток, каждая из которых несет 1 n набор хромосом, поэтому образуется исходная диплоидная (2 n, 2 с) клетка-зитота. В дальнейшем в результате деления диплоидной зиготы и последующего деления диплоидных клеток разовьется организм, клетки которого (кроме зрелых половых) будут диплоидными.
При изучении клеточного цикла диплоидных клеток в их популяции встречаются как диплоидные (2 с), так и тетраплоидные (4 с) и интерфазные клетки с промежуточным количеством ДНК. Такая гетерогенность определяется тем, что удвоение ДНК происходит в строго определенный период интерфазы, а собственно к делению клетки приступают только после этого процесса.
Весь клеточный цикл состоит из 4 отрезков времени: собственно митоза (М), пресинтетического (G1), синтетического (S) и постсинтетического (G2) периодов интерфазы. В G1-пе-риоде, наступающем сразу после деления, клетки имеют диплоидное содержание ДНК на одно ядро (2 с). После деления в период G1 в дочерних клетках общее содержание белков и РНК вдвое меньше, чем в исходной родительской клетке. В период G1 начинается рост клеток главным образом за счет накопления клеточных белков, что определяется увеличением количества РНК на клетку. В этот период начинается подготовка клетки к синтезу ДНК (S-период).
Обнаружено, что подавление синтеза белка или иРНК в G1-пе-риоде предотвращает наступление S-периода, так как в течение G -периода происходят синтезы ферментов, необходимых для образования предшественников ДНК (например, нуклеотид-фосфокиназ), ферментов метаболизма РНК и белка. Это совпадает с увеличением синтеза РНК и белка. При этом резко повышается активность ферментов, участвующих в энергетическом обмене.
В следующем, S-периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хромосом. В разных клетках, находящихся в S-периоде, можно обнаружить разные количества ДНК — от 2 до 4 с. Это связано с тем, что исследованию подвергаются клетки на разных этапах синтеза ДНК (только приступившие к синтезу и уже завершившие его). S-период является узловым в клеточном цикле. Без прохождения синтеза ДНК неизвестно ни одного случая вступления клеток в митотическое деление.
Единственным исключением является второе деление созревания половых клеток в мейозе, когда между двумя делениями нет синтеза ДНК.
В S-периоде уровень синтеза РНК возрастает соответственно увеличению количества ДНК, достигая своего максимума в G2-пе-риоде.
Постсинтетическая (G2) фаза еще называется премитотической. Последним термином подчеркивается ее большое значение для прохождения следующей стадии — стадии митотического деления. Выданной фазе происходит синтез иРНК, необходимый для прохождения митоза. Несколько ранее этого синтезируется рРНК рибосом, определяющих деление клетки. Среди синтезирующихся в это время белков особое место занимают тубулины — белки митотического веретена.
В конце G2-периода или в митозе по мере конденсации митотических хромосом синтез РНК резко падает и полностью прекращается во время митоза. Синтез белка во время митоза понижается до 25% от исходного уровня и затем в последующих периодах достигает своего максимума в G2-периоде, в общем повторяя характер синтеза РНК.
В растущих тканях растений и животных всегда есть клетки, которые находятся как бы вне цикла. Такие клетки принято называть клетками G0-периода. Именно эти клетки представляют собой так называемые покоящиеся, временно или окончательно переставшие размножаться клетки. В некоторых тканях такие клетки могут находиться длительное время, не изменяя особенно своих морфологических свойств: они сохраняют в принципе способность к делению, превращаясь в камбиальные, стволовые клетки(например, в кроветворной ткани). Чаще потеря (хотя бы и временная) способности делиться сопровождается появлением способности к специализации, дифференцировке. Такие дифференцирующиеся клетки выходят из цикла, но в особых условиях могут снова входить цикл. Например, большинство клеток печени находится в Gо-периоде; они не участвуют в синтезе ДНК и не делятся. Однако при удалении части печени у экспериментальных животных, многие клетки начинают подготовку к митозу (G1-период), переходят к синтезу ДНК и могут митотически делиться. В других случаях, например в эпидермисе кожи, после выхода из цикла размножения и дифференцировки клетки некоторое время функционируют, а затем погибают (ороговевшие клетки покровного эпителия).
Деление клеток
Митоз
Митоз, кариокинез, или непрямое деление,—универсальный, широко распространенный способ деления клеток. При этом конденсированные и уже редуплицированные хромосомы переходят в компактную форму митотических хромосом, образуется веретено деления, участвующее в сегрегации и переносе хромосом (ахроматиновый митотический аппарат), происходит расхождение хромосом к противоположным полюсам клетки и деление тела клетки (цитокинез, цитотомия).
Процесс непрямого деления клеток принято подразделять на несколько основных фаз: профаза, метафаза,.анафаза, телофаза.
Профаза. После окончания S-периода количество ДНК в интерфазном ядре равно 4 с, так как произошло удвоение хромосомного материала. Однако морфологически регистрировать удвоение числа хромосом в этой стадии не всегда удается. Собственно хромосомы как нитевидные плотные тела начинают обнаруживаться микроскопически в начале процесса деления клетки, а именно в профазе митотического деления клетки. Если попытаться подсчитать число хромосом в профазе, то их количество будет равно 2 n. Но это ложное впечатление, потому что в профазе каждая из хромосом двойная, что является результатом их редупликации в интерфазе. В профазе эти сестринские хромосомы тесно соприкасаются друг с другом, взаимно спирализуясь одна относительно другой, поэтому трудно увидеть двойственность всей структуры в целом. Позднее хромосомы в каждой такой паре начинают обособляться, раскручиваться. Двойственность хромосом в митозе наблюдается у живых клеток в конце профазы, когда видно, что общее их число в начинающей делиться клетке равно 4 n. Следовательно, уже в начале профазы хромосомы состояли из двух сестринских хромосом, или, как их еще называют, хроматид. Число их (4 n) в профазе точно соответствует количеству ДНК (4с).
Параллельно конденсации хромосом в профазе происходят исчезновение, дезинтеграция ядрышек в результате инактивации рибосомных генов в зоне ядрышковых организаторов.
Одновременно с этим в середине профазы начинается разрушение ядерной оболочки, исчезают ядерные поры, оболочка распадается сначала на фрагменты, а затем на мелкие мембранные пузырьки. Меняются в это время и структуры, связанные с синтезом белка. Происходит уменьшение количества гранулярного эндоплазматического ретикулума, он распадается на короткие цистерны и вакуоли, количество рибосом на его мембранах резко падает. Значительно (до 25%) редуцируется число полисом как на мембранах, так и в гиалоплазме, что является признаком общего падения уровня синтеза белка в делящихся клетках.
Второе важнейшее событие при митозе тоже происходит во время профазы — это образование веретена деления. В профазе
уже репродуцировавшиеся в S-периоде центриоли начинают расходиться к противоположным концам клетки, где будут позднее формироваться полюса веретена. К каждому полюсу отходит по двойной центриоли, диплосоме. По мере расхождения диплосом начинают формироваться микротрубочки, отходящие от периферических участков одной из центриолей каждой диплосомы.
Сформированный аппарат деления в животных клетках имеет веретеновидную форму и состоит из нескольких зон: двух зон центросфер с центриолями внутри них и промежуточной между ними зоны волокон веретена. Во всех этих зонах имеется большое число микротрубочек.
Микротрубочки в центральной части этого аппарата, в собственном веретене деления, так же как микротрубочки центросфер, возникают в результате полимеризации тубулинов в зоне центриолей и около специальных структур — кинетохоров, расположенных в области центромерных перетяжек хромосом. В веретене деления принято различать два типа волокон: идущие от полюса к центру веретена и хромосомные, соединяющие хромосомы с одним из полюсов.
В индукции роста микротрубочек веретена в зоне полюса деления принимает участие одна из центриолей диплосомы, а именно материнская. Такое новообразование и рост нитей (пучков микротрубочек) веретена происходят в профазе митоза.
В то же время видны появляющиеся на хромосомах в местах первичных перетяжек пластинчатые кинетохоры, около которых позднее также появляются микротрубочки, идущие в направлении полюсов деления. Таким образом, у животных клеток Центриоли и хромосомные кинетохоры являются центрами организации микротрубочек веретена деления.
Метафаза занимает около трети времени всего митоза. Во время метафазы заканчивается образование веретена деления, а хромосомы выстраиваются в экваториальной п лоскости веретена, образуя так называемую метафазную пластинку хромосом, или материнскую звезду. К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна разделяющая их щель. Последним местом, где контакт между хроматидами сохраняется, является центромера.
Анафаза. Хромосомы все одновременно теряют связь друг с другом в области центромер и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам клетки. Скорость движения хромосом равномерная, она может достигать 0,2— 0,5 мкм/мин. Анафаза — самая короткая стадия митоза (несколько процентов от всего времени), но за это время происходит ряд событий. Главным из них является обособление двух идентичных наборов хромосом и перемещение их в противоположные концы клетки.
Движение хромосом складываетсяиз двух процессов, расхождения их по направлению к полюсам и дополнительного расхождения самих полюсов.
Предположения о сокращении микротрубочек как о механизме расхождения хромосом в митозе не подтвердились, поэтому многие исследователи поддерживают гипотезу “скользящих нитей”, согласно которой соседние микротрубочки, взаимодействуя друг с другом (например, хромосомные и полюсные) и с сократительными белками, тянут хромосомы к полюсам.
Телофаза начинается с остановки разошедшихся диплоидных (2 n) наборов хромосом (ранняя телофаза) и кончается началом реконструкции нового интерфазного ядра (поздняя телофаза, ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез, цитотомия). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки — к полюсу, теломерные — к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в новый G1-период.
Важное событие телофазы — разделение клеточного тела, цитотомия, или цитокинез, который происходит у клеток животных путем образования перетяжки в результате впячивания плазматической мембраны внутрь клетки. При этом в кортикальном, подмембранном слое цитоплазмы располагаются сократимые элементы типа актиновых фибрилл, ориентированные циркулярно в зоне экватора клетки. Сокращение такого/кольца приведет к впячиванию плазматической мембраны в области этого кольца, что завершается разделением клетки перетяжкой на две.
При повреждении митотического аппарата (действие холода или агентов, вызывающих деполимеризацию тубулинов) может произойти или задержка митоза в метафазе, или рассеивание хромосом. При нарушениях репродукции центриолей могут возникать многополюсные и асимметричные митозы и т. д. Нарушения цитотомии приводят к появлению гигантских ядер или многоядерных клеток.
Морфология митотических хромосом
Как интерфазные, так митотические хромосомы состоят из элементарных хромосомных фибрилл — молекул ДНП. В последнее время принято считать, что на каждую хромосому приходится одна гигантская фибрилла ДНП, сложно уложенная в относительно короткое тельце — собственно митотическую хромосому. Установлено, что в митотической хромосоме существуют боковые петли этой гигантской молекулы дезоксирибонуклеопротеида. Боковые петли хромосом в вытянутом состоянии могут достигать 30 мкм. При их компактизации (спирализации) образуются структуры промежуточного характера — так называемые хромонемные фибриллы. Взаимодействие этих компонентов хромосом друг с другом и их взаимная агрегация приводят к конечной компактизации хроматина в виде митотической хромосомы.
Морфологию митотических хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У большинства хромосом удается легко найти зону первичной перетяжки (центромеры), которая делит хромосому на два плеча. Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины — субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом называют акроцентрическими. В области первичной перетяжки расположен кинетохор. От этой зоны во время митоза отходят микротрубочки клеточного веретена, связанные с перемещением хромосом при делении клетки. Некоторые хромосомы имеют, кроме того, вторичные перетяжки, располагающиеся вблизи одного из концов хромосомы и отделяющие маленький участок — спутник хромосомы. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. В этих местах локализована ДНК, ответственная за синтез рибосомных РНК.
Плечи хромосом оканчиваются теломерами — конечными участками. Размеры хромосом, как и их число, у разных организмов варьируют в широких пределах.
Совокупность числа, размеров и особенностей строения хромосом называется кариотипом данного вида.
При специальных методах окраски хромосомы неравномерно воспринимают красители: вдоль их длины наблюдается чередование окрашенных и неокрашенных участков — дифференциальная неоднородность хромосомы. Важно то, что каждая хромосома имеет свой, неповторимый рисунок такой дифференциальной окраски. Применение методов дифференциальной окраски позволило детально изучить строение хромосом. Хромосомы человека
принято подразделять по их размерам на 7 групп (А, В, С, D, Е, F, G). Если при этом легко отличить крупные (1, 2) хромосомы от мелких (19, 20), метацентрические от акроцентрических (13), то внутри групп трудно различить одну хромосому от другой. Так в группе С6 и С7 хромосомы схожи между собой, так же как и с Х-хромосомой. Дифференциальное окрашивание позволяет четко отличить эти хромосомы друг от друга.
Эндорепродукция
Эндорепродукция — образование клеток с увеличенным содержанием ДНК. Появление таких клеток происходит в результате полного отсутствия или незавершенности отдельных этапов митоза. Существует несколько моментов в процессе митоза, блокада которых приводит к его остановке и появлению полиплоидных клеток, т. е. клеток с увеличенным числом хромосомных наборов. Блокада может наступить при переходе от G2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто нарушается функция и целость веретена деления. Наконец, следствием нарушения цитотомии также может явиться появление полиплоидных клеток — одноядерных и двуядерных.
При блокаде митоза в самом его начале, при переходе его от G2 к профазе, клетки приступают к следующему циклу репликации, приводящему к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме увеличения их объема.
Появление полиплоидных соматических клеток может происходить в результате блокады деления клеточного тела. В печени взрослых млекопитающих встречаются, кроме диплоидных, тетра- и октаплоидные (8 n) клетки, а также двуядерные клетки разной степени плоидности. Процесс полиплоидизации этих клеток происходит следующим образом. После S-периода клетки, обладающие 4 с количеством ДНК, вступают в митотическое деление, проходят все его стадии, включая телофазу, но не приступают к цитотомии. Т а ким образом, образуется двуядерная клетка (2 X 2 n). Если она снова проходит 5-период, то оба ядра в такой клетке будут содержать по 4 с ДНК и 4 n хромосом. Такая двуядерная клетка входит в митоз, на стадии метафазы происходит объединение хромосомных наборов (общее число хромосом равно 8 n), а затем — нормальное деление, в результате которого образуются две тетраплоидные клетки. Этот процесс попеременного появления двуядерных и одноядерных клеток приводит к появлению ядер с 8 n, 16 n и даже 32 n количеством хромосом. Подобным способом образуются Полиплоидные клетки в печени, в эпителии мочевого пузыря, в Пигментном эпителии сетчатки, в ацинарных отделах слюнных и поджелудочной желез, мегакариоциты красного костного мозга. Необходимо отметить, что полиплоидизация соматических клеток встречается на терминальных периодах развития клеток, тканей и органов. Она большей частью характерна для специализированных, дифференцированных клеток и не встречается при генеративных процессах, таких как эмбриогенез (исключая провизорные органы) и образование половых клеток; нет полиплоидии среди стволовых клеток.
Дата добавления: 2016-06-05 | Просмотры: 471 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 |
|