АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Немембранные органоиды

Рибосомы – маленькие (около 20 нм), сферические гранулы, состоящие из комплексов РНК и структурных белков. Располагаются в цитоплазме клетки свободно, или прикрепляются к мембранам эндоплазматической сети. Располагаются поодиночке либо группами из 4-40 (полирибосомы, или полисомы), где отдельные рибосомы связаны между собой нитевидной молекулой информационной РНК, несущей информацию о структуре белка. Рибосома состоит из двух субъединиц (большой и малой), соединенных между собой ионами магния. Субъединицы образуются в ядрышке, сборка рибосом осуществляется в цитоплазме.

Рибосомы обнаружены также в митохондриях и пластидах, но их размер меньше (70 S) и соответствует размеру рибосом прокариотических организмов. Основная функция рибосом – синтез белка в клетке (рис. 4).

 

 

Рис. 4. Схема строения рибосом

Микротрубочки – это тонкие цилиндрические структуры, состоящие из спирально расположенных сферических субъединиц белка тубулина.

Микрофиламенты представляют собой длинные нити толщиной 5-7 нм, состоящие из сократительного белка актина. Совокупность микротрубочек и микрофиламентов составляет цитоскелет.

Одномембранные органоиды

Эндоплазматическая сеть (эндоплазматический ретикулум, ЭПС, ЭПР) представляет собой разветвленную трехмерную сеть каналов, пузырьков и цистерн, ограниченных мембранами, пронизывающую гиалоплазму. Эндоплазматическая сеть в клетках, синтезирующих белки, состоит из мембран, несущих на наружной поверхности рибосомы. Такая форма получила название гранулярной, или шероховатой (рис. 5).

ЭПС, не имеющая рибосом, называется агранулярной, или гладкой. Агранулярная ЭПС принимает участие в синтезе жиров и углеводов. ЭПС функционирует как используется для транспортировки веществ. ЭПС соседних клеток соединяются через плазмодесмы, которые проходят сквозь клеточные стенки.

Рис. 5. Схема строения э ндоплазматической сети

Аппарат Гольджи (диктиосома) названпоимениитальянскогоученого К. Гольджи, впервые описавшего его в животных клетках. В клетках растений аппарат Гольджи состоит из отдельных диктиосом, или телец Гольджи и пузырьков Гольджи. Каждая диктиосома представляет собой стопку из 5-7 и более уплощенных округлых цистерн диаметром около 1 мкм, ограниченных мембраной (рис. 6). По краям диктиосомы часто переходят в систему тонких ветвящихся трубок. Пузырьки Гольджи различного диаметра отчленяются от краев диктиосомных цистерн или краев трубок и направляются обычно в сторону плазмалеммы или вакуоли.

 

 

Рис. 6. Схема строения аппарата Гольджи (диктиосомы):

1 - пузырек Гольджи; 2 - цистерна диктиосомы

 

Диктиосомы являются центрами синтеза, накопления и выделения полисахаридов, прежде всего пектиновых веществ и гемицеллюлоз матрикса клеточной стенки и слизей. Пузырьки Гольджи транспортируют полисахариды к плазмалемме. Особенно развит аппарат Гольджи в клетках, интенсивно секретирующих полисахариды.

Лизосомы –органеллы, отграниченные от гиалоплазмы мембраной и содержащие гидролитические ферменты, способные разрушать органические соединения. У растительных клеток представляют собой мелкие (0,5-2 мкм) цитоплазматические вакуоли и пузырьки – производные эндоплазматической сети или аппарата Гольджи (рис. 7). Основная функция лизосом - разрушение отдельных участков цитоплазмы собственной клетки (автолиз), заканчивающееся образованием на ее месте цитоплазматической вакуоли. Другая функция лизосом – удаление изношенных или избыточных клеточных органелл.

 

Рис. 7. Лизосомы

 

Микротельца – мелкие (0,5-1,5 мкм) сферические органеллы, окруженные одной мембраной. Внутри находится тонкогранулярный плотный матрикс, состоящий из окислительно-восстановительных ферментов. Наиболее известны из микротелец глиоксисомы и пероксисомы.

Глиоксисомы участвуют в превращении жирных масел в сахара, что происходит при прорастании семян.

В пероксисомах происходят реакции светового дыхания (фотодыхания), при этом в них окисляются продукты фотосинтеза с образованием аминокислот.

Митохондрии - округлые органеллы диаметром 0,3-1 мкм, окруженные двумя мембранами. Внутренняя мембрана образует выросты в полость митохондрии – кристы, которые значительно увеличивают ее внутреннюю поверхность. Пространство между кристами заполнено матриксом. В матриксе находятся рибосомы, более мелкие, чем рибосомы гиалоплазмы, и нити собственной ДНК (рис.8).

 

 

Рис. 8. Схемы строения митохондрии

 

Митохондрии называют силовыми станциями клетки. В них осуществляется внутриклеточное дыхание, в результате которого органические соединения расщепляются с высвобождением энергии. Эта энергия идет на синтез АТФ – окислительное фосфорилирование. По мере необходимости энергия, запасенная в АТФ, используется для синтеза различных веществ и в различных физиологических процессах. Число митохондрий в клетке колеблется от нескольких единиц до нескольких сотен.

Митохондрии являются постоянными органеллами, которые не возникают заново, а распределяются при делении между дочерними клетками. Увеличение числа митохондрий происходит за счет их деления. Это возможно благодаря наличию в митохондриях собственных нуклеиновых кислот. Митохондрии способны к независимому от ядра синтезу некоторых своих белков на собственных рибосомах под контролем митохондриальной ДНК. Однако эта их независимость неполная, так как развитие митохондрий происходит под контролем ядра, и митохондрии, таким образом, являются полуавтономными органеллами.

Пластиды –органеллы, характерные только для растений. Различают три типа пластид: 1) хлоропласты (пластиды зеленого цвета); 2) хромопласты (пластиды желтого, оранжевого или красного цвета) и лейкопласты (бесцветные пластиды). Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты имеют наибольшее значение, в них протекает фотосинтез. Они содержат зеленый пигмент хлорофилл, придающий растениям зеленый цвет, и пигменты, относящиеся к группе каротиноидов. Каротиноиды имеют окраску от желтой и оранжевой до красной и коричневой, но обычно она маскируется хлорофиллом. Каротиноиды делят на каротины, имеющие оранжевую окраску, и ксантофиллы, имеющие желтую окраску.

Число хлоропластов в фотосинтезирующих клетках может достигать 40-50 (рис. 9). У водорослей роль фотосинтетического аппарата выполняют хроматофоры. Их форма разнообразна: чашевидная (хламидомонада), лентовидная (спирогира), пластинчатая (пиннулярия) и др.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами – наружной и внутренней. Внутреннее содержимое называется строма. Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами. Тилакоиды собраны в стопки - граны, напоминающие столбики монет (рис. 10). Граны связаны между собой тилакоидами стромы, проходящими через них насквозь вдоль пластиды. Хлорофиллы и каротиноиды встроены в мембраны тилакоидов гран. В строме хлоропластов находятся пластоглобулы – сферические включения жирных масел, в которых растворены каротиноиды, а также рибосомы, сходные по величине с рибосомами прокариот и митохондрий, и нити ДНК. Часто в хлоропластах встречаются крахмальные зерна, это так называемый первичный, или ассимиляционный крахмал – временное хранилище продуктов фотосинтеза.

 

 

Рис. 9. Хлоропласты под световым микроскопом

 

 

Рис. 10. Строение хлоропласта под электронным микроскопом

 

Хлорофилл и хлоропласты образуются только на свету. Основная функция хлоропластов – фотосинтез (образование органических веществ из неорганических за счет энергии света). Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление реакций фотосинтеза. В хлоропластах, как и в митохондриях, происходит синтез АТФ. В этом случае источником энергии служит солнечный свет, поэтому его называют фотофосфорилированием. Хлоропласты участвуют также в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Лейкопласты - мелкие бесцветные пластиды, которые встречаются в клетках органов, скрытых от солнечного света (корни, корневища, клубни, семена). Строение их сходно со строением хлоропластов (рис. 11). Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система, т.к. они участвуют в синтезе и накоплении запасных питательных веществ - крахмала, белков и липидов. Лейкопласты, накапливающие крахмал, называются амилопластами. Этот крахмал имеет вид зерен, в отличие от ассимиляционного крахмала хлоропластов, он называется запасным, или вторичным. Запасной белок может откладываться в форме кристаллов или аморфных включений в так называемых протеинопластах, жирные масла – в виде пластоглобул в элайопластах. Часто в клетках встречаются лейкопласты, не накапливающие запасные питательные вещества, их роль еще до конца не выяснена. На свету лейкопласты могут превращаться в хлоропласты.

 

Рис. 11. Строение лейкопласта

 

Хромопласты - пластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений (ноготки, лютик, одуванчик), зрелых плодов (томат, шиповник, рябина, тыква, арбуз), редко - корнеплодов (морковь), а также в осенних листьях.

Внутренняя мембранная система в хромопластах, как правило, отсутствует. Каротиноиды чаще всего растворены в жирных маслах пластоглобул (рис.12), и хромопласты имеют сферическую форму. В некоторых случаях (корнеплоды моркови, плоды арбуза) каротиноиды откладываются в виде кристаллов различной формы.

 

 

Рис. 12. Строение хромопласта

 

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Косвенное биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов. В хромопласты могут превращаться и лейкопласты.

Пластиды всех трех типов образуются из пропластид – мелких бесцветных телец, которые находятся в меристематических (делящихся) клетках корней и побегов. Пропластиды способны делиться и по мере дифференциации превращаются в пластиды разного типа.

В эволюционном смысле первичным, исходным типом пластид являются хлоропласты, из которых произошли пластиды остальных двух типов. Пластиды имеют много общих черт с митохондриями, отличающих их от других компонентов цитоплазмы. Это, прежде всего, оболочка из двух мембран и относительная генетическая автономность, обусловленная наличием собственных рибосом и ДНК. Такое своеобразие органелл легло в основу представления, что предшественниками пластид и митохондрий были бактерии, которые в процессе эволюции оказались встроенными в эукариотическую клетку и постепенно превратились в хлоропласты и митохондрии (рис. 13).

 

Рис. 13. Образование хлоропластов по теории симбиогенеза


Дата добавления: 2016-06-06 | Просмотры: 1274 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)