АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Жизнедеятельность клетки

Высшие растения являются многоклеточными организмами, состоящими из множества клеток, выполняющих специализированные функции. Несмотря на то, что дифференцированные клетки могут сильно отличаться друг от друга, все они как клетки эукариотического организма имеют ядро, цитоплазму, ряд клеточных органелл и систему мембран, которая не только отделяет клетку от окружающей среды, но и разделяет на компартменты ее внутреннее содержимое. Специфической особенностью строения растительной клетки является наличие системы пластид, крупной центральной вакуоли, а также прочной полисахаридной клеточной стенки. Растительная клетка содержит три относительно автономные, но тесно взаимодействующие генетические системы:

ядерную, митохондриальную и пластидную. Для растительных клеток характерен особый тип роста – рост растяжением. У делящихся растительных клеток отсутствуют центриоли.

Поскольку клеточные стенки клеток одной ткани или органа непосредственно контактируют друг с другом, то возникает единая система клеточных стенок, которая называется апопластом.

Протопласты растительной клетки через поры клеточных стенок связаны между собой плазмодесмами, которые соединяют их в цитоплазматическое целое – симпласт. Каждая плазмодесма представляет собой тяж гиалоплазмы, окруженный плазмалеммой, центральную часть которого занимает десмотрубка, которая связывает эндоплазматический ретикулум соседних клеток. Непрерывную систему эндоплазматического ретикулума растения называют эндопластом. Таким образом, растительный организм представляет собой единую систему дифференцированных клеток, выполняющих определенные функции

и имеющих обусловленные этими функциями особенности строения. Дифференцировка клеток обусловлена изменением активности генома клетки, экпрессией одних генов и подавлением активности других. Специфической особенностью растительных клеток является тотипотентность – способность к дедифференцировке и реализации всей имеющейся в клетке генетической информации, способность дедифференцированной клетки дать начало новому организму. Дифференцированные животные клетки, как правило, тотипотентностью не обладают.

1.6.1. Деление клетки. Митоз

 

Возникновение новых ядер происходит за счет деления уже существующих. При этом ядро в норме никогда не делится простой перетяжкой пополам, поскольку такой способ не может обеспечить совершенно одинакового распределения наследственного материала между двумя дочерними клетками. Это достигается с помощью сложного процесса деления ядра, называемого митозом.

Митоз –это универсальная форма деления ядра, сходная у растений и животных. В нем различают четыре фазы: профазу, метафазу, анафазу и телофазу (рис.16). Период между двумя митотическими делениями называется интерфаза, в которой происходит удвоение ДНК.

В профазе в ядре начинают выявляться хромосомы. Сначала они имеют вид клубка из перепутанных нитей. Затем хромосомы укорачиваются, утолщаются и располагаются упорядоченно. В конце профазы исчезает ядрышко, а ядерная оболочка фрагментируется на отдельные короткие цистерны, неотличимые от элементов эндоплазматической сети, кариоплазма смешивается с гиалоплазмой. На двух полюсах ядра появляются скопления микротрубочек, из которых впоследствии образуются нити митотического веретена.

В метафазе хромосомы окончательно обособляются и собираются в одной плоскости посередине между полюсами ядра, образуя метафазную пластинку. Хромосомы образованы двумя сложенными по длине одинаковыми хроматидами, каждая из которых содержит одну молекулу ДНК. Хромосомы имеют перетяжку - центромеру, которая делит их на два равных или неравных плеча. В метафазе хроматиды каждой хромосомы начинают отделяться друг от друга, связь между ними сохраняется только в области центромеры. К центромерам прикрепляются нити митотического веретена. Они состоят из параллельно расположенных групп микротрубочек.

В анафазе каждая хромосома окончательно разделяется на две хроматиды, которые становятся сестринскими хромосомами. Затем с помощью нитей веретена одна из пары сестринских хромосом начинает двигаться к одному полюсу ядра, вторая – к другому.

Телофаза наступает, когда сестринские хромосомы достигают полюсов клетки. Веретено исчезает, группирующиеся по полюсам хромосомы деконденсируются и удлиняются – они переходят в интерфазный хроматин. Появляются ядрышки, вокруг каждого из дочерних ядер собирается оболочка. Каждая дочерняя хромосома состоит всего из одной хроматиды. Достройка второй половины, осуществляемая путем редупликации ДНК, происходит уже в интерфазном ядре.

 

 

Рис. 16. Схема митоза и цитокинеза растительной клетки

1 — интерфаза, 2—5 — профаза, 6, 7 — метафаза, 8, 9 — анафаза, 10—12 — телофаза.

 

Продолжительность митоза колеблется от 1 до 24 часов. В результате митоза и последующей интерфазы клетки получают одинаковую наследственную информацию и содержат идентичные по числу, размеру и форме с материнскими клетками хромосомы.

В телофазе начинается деление клетки – цитокинез. Сначала между двумя дочерними ядрами появляются многочисленные волокна, совокупность этих волокон имеет форму цилиндра и называется фрагмопласт (рис.16). Как и нити веретена, волокна фрагмопласта образованы группами микротрубочек. В центре фрагмопласта, в экваториальной плоскости между дочерними ядрами, скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке, а ограничивающая их мембрана становится частью плазмалеммы.

Клеточная пластинка имеет форму диска и растет центробежно по направлению к стенкам материнской клетки.

 

1.6.2. Мейоз (редукционное деление ядра)

 

Особый способ деления, при котором в отличие от митоза происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния в гаплоидное. У животных мейоз – основное звено гаметогенеза (процесса образования гамет), а у растений – спорогенеза (процесса образования спор).

Мейоз состоит из двух последовательных делений, в каждом из которых можно выделить те же четыре стадии, что и в обычном митозе (рис.17).

В профазе первого деления, как и в профазе митоза, хроматин ядра переходит в конденсированное состояние – образуются типичные для данного вида растения хромосомы, ядерная оболочка и ядрышко исчезают. Однако при мейозе гомологичные хромосомы располагаются не в беспорядке, а попарно, контактируя друг с другом по всей их длине. При этом спаренные хромосомы могут обмениваться между собой отдельными участками хроматид.

В метафазе первого деления гомологичные хромосомы образуют не однослойную, а двухслойную метафазную пластинку.

В анафазе первого деления гомологичные хромосомы каждой пары расходятся по полюсам веретена деления без продольного разъединения их на изолированные хроматиды.

В результате в телофазе у каждого из полюсов деления оказывается уменьшенное вдвое, гаплоидное число хромосом, состоящих не из одной, а из двух хроматид. Распределение гомологичных хромосом по дочерним ядрам носит случайный характер.

Сразу после телофазы первого деления начинается второй этап мейоза – обычный митоз с разделением хромосом на хроматиды. В результате этих двух делений и следующего за ними цитокинеза образуются четыре гаплоидные дочерние клетки – тетрада. При этом между первым и вторым ядерными делениями интерфаза, а, значит, и редупликация ДНК, отсутствуют. При оплодотворении диплоидный набор хромосом восстанавливается.

 

 

Рис. 17. Схема мейоза: 1 – метафаза I (гомологичные хромосомы собраны попарно в метафазной пластинке); 2 – анафаза I (гомологичные хромосомы отдаляются друг от друга к полюсам веретена без расщепления на хроматиды); 3 – метафаза II (хромосомы располагаются в метафазной пластинке в один ряд, их число уменьшено вдвое); 4 – анафаза II (после расщепления дочерние хромосомы отдаляются друг от друга); 5 – телофаза II (образуется тетрада клеток); В – веретено деления; Хм1 – хромосома из одной хроматиды; Хм2 – хромосома из двух хроматид.

 

Значение мейоза состоит не только в обеспечении постоянства числа хромосом у организмов из поколения в поколение. Благодаря случайному распределению гомологичных хромосом и обмену их отдельными участками, образующиеся в мейозе половые клетки содержат разнообразнейшие сочетания хромосом. Это обеспечивает разнообразие хромосомных наборов, повышает изменчивость признаков у последующих поколений и, таким образом, дает материал для эволюции организмов.

Отклонения от нормальных делений

Амитоз прямое деление интерфазного ядра путем перетяжки без образования структуры хромосом. Он может сопровождаться делением клетки либо ограничиваться делением ядра, что ведет к образованию многоядерных клеток. При этом типе деления наследственный материал не всегда равномерно распределяется между дочерними ядрами. Амитоз чаще встречается в клетках запасающих или патологических тканей.

Эндомитоз это процесс многократного удвоения хромосомного материала в одном и том же ядре. Это происходит из-за нарушения митоза, когда в профазе ядерная оболочка не фрагментируется и количество хромосомного материала в одном ядре многократно удваивается. В результате плоидность клеток увеличивается в десятки и сотни раз.

Полиплоидия. В некоторых случаях образованию половых клеток не предшествует процесс мейоза (разрушаются нити веретена деления) и они остаются диплоидными. При оплодотворении клетки нового растения будут содержать 3n или 4n набор хромосом. Степень плоидности может быть больше четырех (8-, реже 16-, 32-кратной и т.д.). Такие клетки называют полиплоидными. Растения - полиплоиды обычно имеют крупные размеры. Многие высокопродуктивные сорта растений являются полиплоидами (пшеница томаты).


Дата добавления: 2016-06-06 | Просмотры: 926 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)