АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Бланк методики «Культурно-ценностный дифференциал» 4 страница

Если топология свойства не определена, то это означает, что множество испыту­емых нельзя (в соответствии с определением понятия «свойство») разбить на под­множества, обладающие или не обладающие свойством. Иначе: на множестве испы­туемых нельзя ввести отношения эквивалентности—неэквивалентности. Однако на множестве испытуемых можно ввести отношения толерантности (сходства). Это отношение рефлексивно, симметрично, но не транзитивно. Множество индикато­ров нельзя характеризовать по отнесенности к свойству, так как множество свойств, качественно не определенных. Следовательно, каждый испытуемый харак­теризуется лишь структурой своих ответов.

Единственно возможный способ интерпретации таких результатов — выделение из множества испытуемых «эталонного испытуемого» (например, решившего все за­дачи теста). После этого производится подсчет коэффициентов сходства всех испы­туемых с «эталоном».

Назовем этот вариант модели «моделью сходств». В психологических исследова­ниях она применяется редко. Очевидно, свою роль играет стремление исследовате­лей максимально повысить мощность интерпретации данных.

2. Свойство качественно определено.

Топология свойства определена: оно является точечным. На множества испыту­емых можно ввести отношение эквивалентности—неэквивалентности (рефлексив­ное, симметричное, транзитивное), указывающее на наличие или отсутствие у них свойства. Следовательно, отображение F 1: является отображением множе­ства на точку. Вектор значений Рij характеризует индивидуальную меру выражен­ности свойства (в вероятностной интерпретации — вероятность его наличия) у ис­пытуемого. Соответственно определены все отображения F 1', F2' и F3' (и обратные им). Если испытуемые обладают / не обладают свойством, то их можно разбить на основании результата тестирования на классы, имеющие и не имеющие свойства. При интерпретации данных используется следующий алгоритм: фиксируются инди­каторы, проявленные испытуемым, подсчитывается индивидуальный показатель на­личия или отсутствия у него свойства и принимается решение о его принадлежно­сти к одному из дихотомических классов — А и (обладающих и не обладающих свойством).

Назовем эту модель моделью дихотомической классификации. Она использова­на в опросниках Личко, опросниках УНП и ряде других.

3. Свойство качественно и количественно определено. Свойство является линейным континуумом, следователь, на нем определена мет­рика. Отображение F 1': указывает на меру принадлежности испытуемых к той или иной градации свойства (точке линейного континуума).

В этом случае для подсчета величины, характеризующей принадлежность испы­туемого к определенной интенсивности свойства, применяют кумулятивно-аддитив­ную модель: число признаков, проявленных при выполнении заданий теста (с уче­том «весов»), прямо пропорционально интенсивности свойства, которым обладает испытуемый. Эта модель есть отображение F2': . Тем самым применяется сле­дующая интерпретация: фиксируются ответы испытуемого; вычисляется «сырой» балл; испытуемый обладает определенной интенсивностью свойства на основе отображения «сырого» балла на шкалу, характеризующую свойство. Эта модель — модель латентного континуума — является наиболее распространенной при тести­ровании психических свойств.

Индикаторы свойства также могут быть однородными и разнородными. В послед­нем случае они шкалируются или не шкалируются. Если индикаторы однородны, то они выявляют свойство или уровень его интенсивности с равной вероятностью. Если индикаторы разнородны, то они выявляют свойство или уровень его интенсивности с разной вероятностью. На множестве индикаторов может быть введена некоторая мера — «сила» признака: чем сильнее признак, тем с большей вероятностью он вы­являет свойство или определенный уровень его интенсивности. В этом случае для описания теста мы получаем так называемую модель Раша.

6.4. Классическая эмпирико-статистическая теория теста

Классическая теория теста лежит в основе современной дифферен­циальной психометрики.

Описание оснований этой теории содержится во многих учебниках, пособиях, практических руководствах, научных монографиях. Количество изданных учебни­ков, излагающих эмпирико-статистическую теорию теста, особенно выросло за по­следние 5-7 лет. Вместе с тем в учебнике, посвященном методам психологического исследования, нельзя хотя бы вкратце не упомянуть основные положения теории психологического тестирования.

Конструирование тестов для изменения психологических свойств и состояний основано на шкале интервалов. Измеряемое психическое свойство считается линей­ным и одномерным. Предполагается также, что распределение совокупности людей, обладающих данным свойством, описывается кривой нормального распределения.

В основе тестирования лежит классическая теория погрешности измерений; она полностью заимствована из физики. Считается, что тест — такой же измеритель­ный прибор, как вольтметр, термометр или барометр, и результаты, которые он по­казывает, зависят от величины свойства у испытуемого, а также от самой процеду­ры измерения («качества» прибора, действий экспериментатора, внешних помех и т.д.). Любое свойство личности имеет «истинный» показатель, а показания по те­сту отклоняются от истинного на величину случайной погрешности. На показания теста влияет и «систематическая» погрешность, но она сводится к прибавлению (вы­читанию) константы к «истинной» величине параметра, что для интервальной шка­лы значения не имеет.

Если тест проводить много раз, то среднее будет характеристикой «истинной» величины параметра. Отсюда выводится понятие ретестовой надежности: чем тес­нее коррелируют результаты начального и повторного проведения теста, тем он на­дежнее. Стандартная погрешность измерения:

Предполагается, что существует множество заданий, которые могут репрезен­тировать измеряемое свойство Тест есть лишь выборка заданий из их генеральной совокупности. В идеале можно создать сколько угодно эквивалентных форм теста. Отсюда — определение надежности теста методами параллельных форм и расщеп­ление его на эквивалентные равные части.

Задания теста должны измерять «истинное» значение свойства. Все задания оди­наково скоррелированы друг с другом. Корреляция задания с истинным показате­лем:

Поскольку в реальном монометрическом тесте число заданий ограничено (не более 100), то оценка надежности теста всегда приблизительна.

Так, определяемая надежность теста связана с однородностью, которая выражается в корреляциях между заданиями. Надежность возрастает с увеличением одномерности теста и числа его заданий, причем довольно быстро. Стандартная надежность 0,02 соответствует тесту длиной в 10 заданий, а при 30 заданиях она равна 0,007.

Оценка стандартной надежности:

Для оценок надежности используется ряд показателей. Наиболее известна формула Кронбаха:

Для определения надежности методом расщепления используется формула Спирмена—Брауна.

В принципе классическая теория теста касается лишь проблемы надежности. Вся она базируется на том, что результаты выполнения разных заданий можно сумми­ровать с учетом весовых коэффициентов.

Так получается «сырой» балл

Y=åaxi+c,

где xi — результат выполнения i -го задания, а — весовой коэффициент ответа, с — произвольная константа.

По поводу того, откуда возникают «ответы», в классической теории не говорится ни слова.

Несмотря на то, что проблеме валидности в классической теории теста уделяет­ся много внимания, теоретически она никак не решается. Приоритет отдан надеж­ности, что и выражено в правиле: валидность теста не может быть больше его на­дежности.

Валидность означает пригодность теста измерять то свойство, для измерения ко­торого он предназначен. Следовательно, чем больше на результат выполнения тес­та или отдельного задания влияет измеряемое свойство и чем меньше — другие пе­ременные (в том числе внешние), тем тест валидней и, добавим, надежнее, посколь­ку влияние помех на деятельность испытуемого, измеряемую валидным тестом, минимально.

Но это противоречит классической теории теста, которая основана не на дея-тельностном подходе к измерению психических свойств, а на бихевиористской па­радигме: стимул—ответ. Если же рассматривать тестирование как активное порож­дение испытуемым ответов на задания, то надежность теста будет функцией, произ­водной от валидности.

Тест валиден (и надежен), если на его результаты влияет лишь измеряемое свой­ство.

Тест невалиден (и ненадежен), если результаты тестирования определяются вли­янием нерелевантных переменных.

Каким же образом определяется валидность? Все многочисленные способы до­казательства валидности теста называются разными ее видами.

1. Очевидная валидность. Тест считается валидным, если у испытуемого скла­дывается впечатление, что он измеряет то, что должен измерять.

2. Конкретная валидность, или конвергентная—дивергентная валидность. Тест должен хорошо коррелировать с тестами, измеряющими конкретное свойство либо близкое ему по содержанию, и иметь низкие корреляции с тестами, измеряю­щими заведомо иные свойства.

3. Прогностическая валидность. Тест должен коррелировать с отдаленными по времени внешними критериями: измерение интеллекта в детстве должно пред­сказывать будущие профессиональные успехи.

4. Содержательная валидность. Применяется для тестов достижений: тест дол­жен охватывать всю область изучаемого поведения.

5. Конструктная валидность. Предполагает:

а) полное описание измеряемой переменной;

б) выдвижение системы гипотез о связях ее с другими переменными;

в) эмпирическое подтверждение (неопровержение) этих гипотез.

С теоретической точки зрения, единственным способом установления «внутрен­ней» валидности теста и отдельных заданий является метод факторного анализа (и аналогичные), позволяющий:

а) выявлять латентные свойства и вычислять значение «факторных нагрузок» — коэффициенты детерминации свойств тех или иных поведенческих признаков;

б) определять меру влияния каждого латентного свойства на результаты тести­рования.

К сожалению, в классической теории теста не выявлены причинные связи фак­торных нагрузок и надежности теста.

Дискриминативность задания является еще одним параметром, внутренне при­сущим тесту. Тест должен хорошо «различать» испытуемых с разными уровнями выраженности свойства. Считается, что больше 9-10 градаций использовать не стоит.

Тестовые нормы, полученные в ходе стандартизации, представляют собой систе­му шкал с характеристиками распределения тестового балла для различных выбо­рок. Они не являются «внутренним» свойством теста, а лишь облегчают его практи­ческое применение.

6.5. Стохастическая теория тестов (IRT)

Наиболее общая теория конструирования тестов, опирающаяся на теорию измерения, — Item Response Theory (IRT). Она основывается на теории латентно-структурного анализа (ЛСА), созданной П. Лазарсфельдом и его после­дователями.

Латентно-структурный анализ создан для измерения латентных (в том числе пси­хических) свойств личности. Он является одним из вариантов многомерного анали­за данных, к которым принадлежат факторный анализ в его различных модификаци­ях, многомерное шкалирование, кластерный анализ и др.

Теория измерения латентных черт предполагает, что:

1. Существует одномерный континуум свойства — латентной переменной (х); на этом континууме происходит вероятностное распределение индивидов с опреде­ленной плотностью f(х).

2. Существует вероятностная зависимость ответа испытуемого на задачу (пункт теста) от уровня его психического свойства, которая называется характеристи­кой кривой пункта. Если ответ имеет две гра­дации («да — нет», «верно — неверно»), то эта функция есть вероятность ответа, завися­щая от места, занимаемого индивидом на кон­тинууме (х).

3. Ответы испытуемого не зависят друг от друга, а связаны только через латентную чер­ту. Вероятность того, что, выполняя тест, ис­пытуемый даст определенную последователь­ность ответов, равна произведению вероятно­стей ответов на отдельные задания.

Конкретные модели ЛСА, применяемые для анализа эмпирических данных, основаны на дополнительных допущениях о плотности распределения индивидов на латентном континууме или о форме функциональной связи уровня выраженности свойства у ис­пытуемого и ответа на пункт теста.

В модели латентного класса функция плотности распределения индивидов явля­ется точечно-дискретной: все индивиды относятся к разным непересекающимся классам. Измерение производится при помощи номинальной шкалы.

В модели латентной дистанции постулируется, что вероятность ответа индивида на пункт текста является мультипликативной функцией от параметров задачи и ве­личины свойства:

Вероятность ответа на пункт теста описывается функцией, изображенной на гра­фике (рис. 6.5).

Модель нормальной огивы есть обобщение модели латентной дистанции. В ней вероятность ответа на задание такова:

В логистической модели вероятность ответа на задание описывается следующей зависимостью:

Логистическая модель используется наиболее широко, так как она специально предназначена для тестов, где свойство измеряется суммированием баллов, полу­ченных за выполнение каждого задания с учетом их весов.

Логистическая функция и функция нормального распределения тесно связаны:

Развитием ЛСА являются различные модификации Item Response Theory. В IRT распределения переменных на оси латентного свойства непрерывны, т.е. модель ла­тентного класса не используется.

База для IRT— это модель латентной дистанции. Предполагается, что и индиви­дов, и задания можно расположить на одной оси «способность — трудность» или «интенсивность свойства — сила пункта». Каждому испытуемому ставится в соот­ветствие только одно значение латентного параметра («способности»).

В общем виде вероятность ответа зависит от множества свойств испытуемого, но в моделях IRT рассматривается лишь одномерный случай.

Главное отличие IRT от классической теории теста в том, что в ней не ставятся и не решаются фундаментальные проблемы эмпирической валидности и надежности теста: задача априорно соотносится лишь с одним свойством, т.е. тест заранее счи­тается валидным. Вся процедура сводится к получению оценок параметров трудности задания и к измерению «способностей» испытуемых (образованию «характери­стических кривых»).

В классической теории теста индивидуальный балл (уровень свойства) считает­ся некоторым постоянным значением. В IRT латентный параметр трактуется как непрерывная переменная.

Первичной моделью в IRT стала модель латентной дистанции, предложенная Г. Рашем: [Rasch G., 1980]: разность уровня способности и трудности теста xi – bi, где хi положение i -ro испытуемого на шкале, а bj положение j -го задания на той же шкале. Расстояние (xi – bi) характеризует отставание способности испытуе­мого от уровня сложности задания. Если разница велика и отрицательна, то задание не может быть выполнено, так как для данного испытуемого оно слишком сложно. Если же разница велика и положительна, то задание также не информативно, ибо испытуемый заведомо легко и правильно его решит.

Вероятность правильного решения задания (или ответа «да») i -м испытуемым:

Вероятность выполнения j -го задания группой испытуемых:

В IRT функции х и f(b) называются функциями выбора пункта. Соответственно первая является характеристической функцией испытуемого, а вторая — характе­ристической функцией задания.

Считается, что латентные переменные х и b нормально распределены, поэтому для характеристически функций выбирают либо логистическую функцию, либо ин­тегральную функцию нормированного нормального распределения (как мы уже от­метили выше, они мало отличаются друг от друга).

Поскольку логистическую функцию проще аналитически задавать, ее использу­ют чаще, чем функцию нормального распределения.

Кроме «свойства» и «силы пункта» (она же — трудность задания) в аналитиче­скую модель IRT могут включаться и другие переменные. Все варианты IRT класси­фицируются по числу используемых в них переменных.

Наиболее известны однопараметрическая модель Г. Раша, двухпараметрическая модель А. Бирнбаума и его же трехпараметрическая модель.

В однопараметрической модели Раша предполагается, что ответ испытуемого обусловлен только индивидуальной величиной измеряемого свойства (qi) и «силой» тестового задания (bj). Следовательно, для верного ответа («да»)

и для неверного ответа («нет»)

Наиболее распространена модель Раша с логистической функцией отклика.

 


Для тестового задания:

Для испытуемого:

Естественно, чем выше уровень свойства (способности), тем вероятнее получить правильный ответ («ключевой» ответ — «да»). Следовательно, функция явля­ется монотонно возрастающей.

В точке перегиба характеристической кривой i-го задания теста «способность» равна «трудности задания», следовательно, «вероятность его решения» равна 0,5 (рис. 6.6).

Очевидно, что индивидуальная кривая испытуемого, характеризующая вероят­ность решить то или иное задание (дать ответ «да»), будет монотонно убывающей функцией(рис. 6.7).

В точке на шкале, где «трудность» равна «индивидуальной способности испытуе­мого», происходит перегиб функции. С ростом «способности» (развитием психоло­гического свойства) кривая сдвигается вправо.

Главной задачей IRT является шкалирование пунктов теста и испытуемых.

Упростим исходную формулу модели, введя параметр V = e qi-bi:


Шанс на успех i -го испытуемого при решении j -го задания определяется отноше­нием:

Если сравнить шансы двух испытуемых решить одно и то же j -е задание, то это отношение будет следующим:

Следовательно, разница в успешности задания испытуемыми не зависит от слож­ности задания и определяется лишь уровнем способности.

Нетрудно заметить, что в модели Раша отношение трудности заданий не зависит от способности испытуемых. Для того чтобы убедиться в этом, достаточно проде­лать аналогичные простейшие преобразования, сравнивая вероятности ответов группы на два пункта теста, а не вероятности ответов разных испытуемых.

Следовательно,

Для сравнения шансов на успех i -го испытуемого решить задания k и п берем отношение:

Тем самым отношение шансов испытуемого решить два разных задания опреде­ляется лишь трудностью этих заданий.

Обратим внимание, что шкала Раша (в теории) является шкалой отношений. Теперь у нас есть возможность ввести единицу измерения способности (в общем виде — свойства). Если взять натуральный логарифм от e bn – bk или е qi – qm, то получа­ется единица измерения «логит» (термин ввел Г. Раш), которая позволяет измерить и «силу пункта» (трудность задания), и величину свойства (способность испытуе­мого) в одной шкале.

Эмпирически эта процедура производится следующим образом. Предполагается, что данные тестирования и значения латентных переменных характеризуются нормальным распределением. Уровень «способности» ис­пытуемого в «логитах» определяется на шка­ле интервалов с помощью формулы:

где п — число испытуемых, рi доля пра­вильных ответов i -го испытуемого на задания теста, qi. — доля неправильных ответов,

Для первичного определения трудности задания в логитах используют оценку

pj + qj = 1.

Хотя параметры b и q изменяются от «плюса» до «минуса», то при b < –6 значе­ния рi близки к единице, т. е. на эти задания практически каждый испытуемый дает правильный («ключевой») ответ. При b < 6 с заданием не сможет справиться ни один испытуемый, точнее — вероятность дать «ключевой» ответ ничтожна.

Рекомендуется рассматривать лишь интервалы от –3 до +3 как для b (трудно­сти), так и для q (способность).

Второй этап шкалирования испытуемых и заданий сводится к тому, что шкалы преобразуются в единую шкалу путем «уничтожения» влияния трудности задания на результат индивидов. И к тому же элиминируется влияние индивидуальных спо­собностей на решение заданий различной трудности.

Для шкалы испытуемых:

где

b — среднее значение логитов трудности заданий теста, W — стандартное отклоне­ние распределения начальных значений параметра b, п — число испытуемых.

Для шкалы заданий:

где


`q — среднее значение логитов уровней способностей, V— стандартное отклоне­ние распределения начальных значений «способности», п — число заданий в тесте.

Эти эмпирические оценки используются в качестве окончательных характери­стик измеряемого свойства и самого измерительного инструмента (заданий теста).

Если перед исследователем стоит задача конструирования теста, то он присту­пает к получению характеристических кривых заданий теста. Характеристические кривые могут накладываться одна на другую. В этом случае избыточные задания выбраковываются. На определенных участках оси q («способность») характеристи­ческие кривые заданий могут вовсе отсутствовать Тогда разработчик теста должен добавить задания недостающей трудности, чтобы равномерно заполнить ими весь интервал шкалы логитов от –6 до +6. Заданий средней трудности должно быть боль­ше, чем на «краях» распределения, чтобы тест обладал необходимой дифференциру­ющей (различающей) силой.

Вся процедура эмпирической проверки теста повторяется несколько раз, пока разработчик не останется доволен результатом работы. Естественно, чем больше заданий, различающихся по уровню трудности, предложил разработчик для первич­ного варианта теста, тем меньше итераций он будет проводить.

Главным недостатком модели Раша теоретики считают пренебрежение «крутиз­ной» характеристических кривых «крутизна» их полагается одинаковой.

Задания с более «крутыми» характеристическими кривыми позволяют лучше «различать» испытуемых (особенно в среднем диапазоне шкалы способностей), чем задания с более «пологими» кривыми.

Параметр, определяющий «крутизну» характеристических кривых заданий, на­зывают дифференцирующей силой задания. Он используется в двухпараметриче­ской модели Бирнбаума.

Модель Бирнбаума аналитически описывается формулой

Параметр aj определяет «крутизну» кривой в точке ее перегиба; его значение прямо пропорционально тангенсу угла наклона касательной к характеристической кривой задания теста в точке (рис 6.8).

Интервал изменения параметра aj от –¥ до +¥. Если значения a близки к 0 (для заданий разной трудности), то испытуемые, различающиеся по уровню выраженно­сти свойства, равновероятно дают «ключевой» ответ на это задание теста. При вы­полнении такого задания у испытуемых не обнаруживается различий.

Парадоксальный вариант получаем при a < 0. В этом случае более способные испытуемые отвечают правильно с меньшей вероятностью, а менее способные — с большей вероятностью. Опытные психодиагносты знают, что такие случаи встре­чаются в практике тестирования очень часто.

Ф. М. Лорд и М. Новик в своей классической работе [Lord F. M., Novik M., 1968] приводят формулы оценки параметра a. При aj = 1 задание соответствует однопара­метрической модели Раша. Практики рекомендуют использовать задания, характе­ризующие значение a в интервале от 0,5 до 3.

Все психологические тесты можно разделить в зависимости от формального типа ответов испытуемого на «открытые» и «закрытые». В тестах с «открытым» ответом, к которым относятся тест WAIS Д. Векслера или методика дополнения предложе­ний, испытуемый сам порождает ответ. Тесты с «закрытыми» заданиями содержат варианты ответов. Испытуемый может выбрать один или несколько вариантов из предлагаемого множества. В тестах способностей (тест Дж. Равена, GABT и др.) предусмотрено несколько вариантов неправильного решения и один правильный. Испытуемый может применить стратегию угадывания. Вероятность угадывания ответа:

где п — число вариантов.

Результаты эмпирических исследований показали, что относительная частота решения «закрытых» заданий отклоняется от теоретически предсказанных вероят­ностей двухпараметрической модели Бирнбаума. Чем ниже уровень способностей испытуемого (низкие значения параметра q), тем чаще он прибегает к стратегии уга­дывания. Аналогично, чем труднее задание, тем больше вероятность того, что испы­туемый будет пытаться угадать правильный ответ, а не решать задачу.

Бирнбаум предложил трехпараметрическую модель, которая позволила бы учесть влияние угадывания на результат выполнения теста.

Трехпараметрическая модель Бирнбаума выглядит так:

Соответственно оценка «силы» пункта (трудности задания) в логистической фор­ме модели

Сj характеризует вероятность правильного ответа на задание j в том случае, если испытуемый угадывал ответ, а не решал задание, т.е. при q —> 0. Для заданий с пя­тью вариантами ответов Сj становится более пологой, так как 0 < С < 1, но при всех С = 0 кривая поднимается над осью q на величину Сj. Тем самым даже самый неспо­собный испытуемый не может показать нулевой результат. Дифференцирующая сила тестового задания при введении параметра Сj снижается. Из этого следует не­тривиальный вывод: тесты с «закрытыми» заданиями (вынужденным выбором ответа) хуже дифференцируют испытуемых по уровням свойства, чем тесты с «открыты­ми» заданиями.


Дата добавления: 2016-06-06 | Просмотры: 541 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.02 сек.)