ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ. Функции центральной нервной системы
Функции центральной нервной системы. Организм человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем.
Эту взаимосвязь (интеграцию) функций, их согласованное функционирование обеспечивает центральная нервная система (ЦНС). ЦНС регулирует все процессы, протекающие в организме, поэтому с ее помощью происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.
ЦНС также осуществляет связь организма с внешней средой, путем анализа и синтеза поступающей к ней разнообразной информации от рецепторов. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру. Кроме того с функциями ЦНС связаны процессы, лежащие в основе психической деятельности человека.
Методы исследования функций ЦНС. Интенсивное развитие физиологии ЦНС обусловило переход от описательных методов изучения функций различных отделов мозга к экспериментальным методам. Многие методы, используемые для изучения функции ЦНС, применяются в сочетании друг с другом.
Метод разрушения (экстерпации) различных отделов ЦНС. С помощью этого метода можно установить какие функции ЦНС выпадают после оперативного вмешательства и какие сохраняются. Данный методический прием давно используется в экспериментально-физиологических исследованиях.
Метод перерезки, дает возможность изучить значение в деятельности того или иного отдела ЦНС влияний, поступающих от других ее отделов. Перерезка производится на различных уровнях ЦНС. Полная перерезка, например, спинного мозга или ствола мозга разобщает вышележащие отделы ЦНС от нижележащих и позволяет изучить рефлекторные реакции, которые осуществляются нервными центрами, расположенными ниже места перерезки. Перерезка и локальное повреждение отдельных нервных центров производится не только в условиях эксперимента, но и в нейрохирургической клинике в качестве лечебных мероприятий.
Метод раздражения позволяет изучить функциональное значение различных образований ЦНС. При раздражении (химическом, электрическом, механическом и т. д.) определенных структур мозга можно наблюдать возникновение, особенности проявления и характер распространения процессов возбуждения.
Электроэнцефалография - метод регистрации суммарной электрической активности различных отделов головного мозга. Впервые запись электрической активности мозга была осуществлена В. В. Правдич-Неминским с помощью электродов, погруженных в мозг. Бергер зарегистрировал потенциалы мозга с поверхности черепа и назвал запись колебаний потенциалов мозга электроэнцефалограммой (ЭЭГ-ма).
Частота и амплитуда колебаний может меняться, но в каждый момент времени в ЭЭГ-ме преобладают определенные ритмы, которые Бергер назвал альфа-, бета-, тета- и дельта-ритмами. Альфа-ритм характеризуется частотой колебаний 8-13 Гц, амплитуда 50 мкВ. Этот ритм лучше всего выражен в затылочной и теменной областях коры и регистрируется в условиях физического и умственного покоя при закрытых глазах. Если глаза открыть, то альфа-ритм сменяется более быстрым бета-ритмом. Бета-ритм характеризуется частотой колебаний 14-50 Гц и амплитудой до 25 мкВ. У некоторых людей альфа-ритм отсутствует и поэтому в покое регистрируется бета-ритм. 'В связи с этим различают бета-ритм 1 с частотой колебаний 16-20 Гц, он характерен для состояния покоя и регистрируется в лобной и теменной областях. Бета-ритм 2 с частотой 20-50 Гц и характерен он для состояния интенсивной деятельности мозга. Тета-ритм представляет собой колебания с частотой 4-8 Гц и амплитудой 100-150 мкВ. Этот ритм регистрируется в височной и теменной областях при психомоторной активности, при стрессе, во время сна, при гипоксии и легком наркозе. Дельта-ритм характеризуется медленными колебаниями потенциалов с частотой 0,5-3,5 Гц, амплитудой 250-300 мкВ. Этот ритм регистрируется во время глубокого сна, при глубоком наркозе, при гипоксии.
ЭЭГ метод используется в клинике с диагностической целью. Особенно широкое применение этот метод нашел в нейрохирургической клинике для определения локализации опухолей мозга. В неврологической клинике этот метод находит применение при определении локализации эпилептического очага, в психиатрической клинике- для диагностики расстройств психики. В хирургической клинике ЭЭГ используется для тестирования глубины наркоза.
Метод вызванных потенциалов - регистрация электрической активности определенных структур мозга при стимуляции рецепторов, нервов, подкорковых структур. Вызванные потенциалы (ВП) чаще всего представляют собой трехфазные колебания ЭЭГ-мы, сменяющие друг друга: позитивное, негативное, второе (позднее) позитивное колебание. Однако, они могут иметь и более сложную форму. Различают первичные (ПО) и поздние или вторичные (ВО) вызванные потенциалы. ВП - это фрагмент ЭЭГ-мы, записанный в момент стимуляции мозга и имеет ту же природу, что и электроэнцефалограмма.
Метод ВП находит применение в неврологии и в нейрофизиологии. С помощью ВП можно проследить онтогенетическое развитие проводящих путей мозга, провести анализ локализации представительства сенсорных функций, провести анализ связей между структурами мозга, показать количество переключении на пути распространения возбуждения и т. д.
Микроэлектродный метод применяется для изучения физиологии отдельного нейрона, его биоэлектрический активности как в состоянии покоя, так и при различных воздействиях. Для этих целей используются специально изготовленные стеклянные или металлические микроэлектроды, диаметр кончика которых составляет 0,5-1,0 мкм или чуть больше. Стеклянные микроэлектроды представляют собой микропипетки, заполненные раствором электролита. В зависимости от расположения микроэлектрода различают два способа отведения биоэлектрической активности клеток – внутриклеточное и внеклеточное.
Внутриклеточное отведение позволяет регистрировать и измерять:
• мембранный потенциал покоя;
• постсинаптические потенциалы (ВПСП и ТПСП);
• динамику перехода местного возбуждения в распространяющееся;
• потенциал действия и его компоненты.
Внеклеточное отведение дает возможность регистрировать:
• спайковую активность как отдельных нейронов, так и, в основном, их групп, расположенных вокруг электрода.
Для точного определения положения различных структур головного мозга и для введения в них различных микропредметов (электроды, термопары, пипетки и др.) широкое применение как в электрофизиологических исследованиях, так и в нейрохирургической клинике нашел стереотаксический метод. Его использование основано на результатах детальных анатомических исследованиях расположения различных структур головного мозга относительно костных ориентиров черепа. По данным таких исследований созданы специальные стереотаксические атласы как для различных видов животных, так и для человека. В настоящее время стереотаксический метод находит широкое применение в нейрохирургической клинике для следующих целей:
• разрушения структур мозга с целью ликвидации состояний гиперкинеза, неукротимой боли, некоторых психических расстройств, эпилептических нарушений и др.;
• выявления патологических эпилептогенных очагов;
• введения радиоактивных веществ в опухоли мозга и для разрушения этих опухолей;
• коагуляции аневризм мозговых сосудов;
• осуществления лечебных электростимуляций или торможений структур мозга.
Строение ЦНС. Структурно-функциональной единицей ЦНС является нейрон (нервная клетка). Он состоит из тела (сомы) и отростков - многочисленных дендритов и одного аксона. Дендриты обычно сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, функцией которого является генерация нервного импульса, который по аксону проводится к другим клеткам. Аксон сильно ветвится, образуя множество коллатералей, терминали которых образуют синапсы с другими клетками. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому процесс выделения медиатора пресинаптическими окончаниями может эффективно регулироваться другими нейронами. Кроме того, мембрана окончаний содержит большое число потенциалозависимых кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении.
В большинстве центральных нейронов ПД возникает в области мембраны аксонного холмика, возбудимость которой в два раза выше других участков и отсюда возбуждение распространяется по аксону и телу клетки. Такой способ возбуждения нейрона важен для осуществления его интегративной функции, т. е. способности суммировать влияния, поступающие на нейрон по разным синаптическим путям.
Степень возбудимости разных участков нейрона неодинакова, она самая высокая в области аксонного холмика, в области тела нейрона она значительно ниже и самая низкая у дендритов.
Помимо нейронов в ЦНС имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток - швановских клеток. Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друг с другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространство происходит обмен веществами между нервными и глиальными клетками. Функции клеток глии многообразны:
• они являются для нейронов опорным, защитным и трофическим аппаратом, поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве;
• активно поглощают нейромедиаторы, ограничивая таким образом время их действия и другие функции.
Аксонный транспорт. Аксоны, помимо функции проведения возбуждения, являются каналами для транспорта различных веществ. Белки и медиатор, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида - быстрый и медленный аксонный транспорт.
Быстрый аксонный транспорт - это транспорт везикул, митохондрий и некоторых белковых частиц от тела клетки к окончаниям аксона (антероградный транспорт) со скоростью 250-400 мм/сут. Он осуществляется специальным транспортным механизмом – при помощи микротрубочек и нейрофиламентов и сходен с механизмом мышечного сокращения.
Быстрый аксонный транспорт от терминалей аксона к телу клетки, или ретроградный, перемещает лизосомы, везикулы, возникающие в окончаниях аксона в ходе пиноцитоза, например, ацетилхолинэстеразы, некоторых вирусов, токсинов и др. со скоростью 220 мм/сут. Скорость быстрого антероградного и ретроградного транспорта не зависит от типа и диаметра аксона.
Медленный аксонный транспорт обеспечивает перемещение со скоростью 1-4 мм/сут белков и структур цитоплазмы (микротрубочек, нейрофиламентов, РНК, транспортных и канальных мембранных белков и т. д.) в дистальном направлении за счет интенсивности синтетических процессов в перикарионе. Медленный аксонный транспорт имеет особое значение в процессах роста и регенерации отростков нейрона.
Дата добавления: 2015-05-19 | Просмотры: 919 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |
|