АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Периферический (рецепторный) отдел анализаторов

Прочитайте:
  1. B) в среднем отделе передней центральной извилины слева
  2. B) средний отдел прецентральной извилины слева
  3. C) нарушение процессов реабсорбции в проксимальных отделахпочечных канальцев
  4. I. Первичный (периферический, надпочечниковый) гиперкортизолизм.
  5. I. Свод мозгового отдела
  6. II АКУШЕРСКОЕ (ОБСЕРВАЦИОННОЕ) ОТДЕЛЕНИЕ
  7. II курса факультета ВСО (заочное отделение)
  8. II курса факультета ВСО (заочное отделение) 3 семестр (ДО)
  9. II. Организация хирургической службы в России. Основные виды хирургических учреждений. Принципы организации работы хирургического отделения.
  10. II. Специфическая терапия отдельных болезней

Рецепторы играют ведущую роль в получении организмом информации о состоянии внешней и внутренней среды. Благодаря большому многообразию рецепторов человек способен воспринимать стимулы разных модальностей.

Рецепторы представляют собой конечные специализированные образования, которые предназначены для восприятия энергии раздражителя и трансформации ее в специфическую активность нервной клетки. У большинства рецепторных аппаратов основной структурной единицей является клетка, снабженная подвижными волосками или ресничками, которые представляют собой как бы периферические подвижные антенны. В составе волосков выделяют 9 пар периферических фибрилл, которые сокращаются под действием атф, благодаря чему осуществляется непрерывные поиски адекватного стимула и обеспечиваются условия взаимодействия с ним. Центральные 2 фибриллы выполняют опорную функцию.

Общий механизм рецепции слагается из механохимических молекулярных процессов, обеспечивающих движение антенн, и общих биохимических циклов при взаимодействии специфического стимула с рецепторными мембранами антенн. Однако, у некоторых рецепторов во взаимодействии со стимулом принимает участие вся клетка (например, хеморецепторные клетки, чувствительные к напряжению кислорода в крови), у других восприятие осуществляется микроворсинками (вкусовые луковицы). У большинства рецепторов кожи, внутренних органов и мышц участки преобразования стимула находятся в окончаниях нервных волокон.

Классификация рецепторов. В основу классификации рецепторов положено несколько критериев.

• Психофизиологический характер ощущения: тепловые, холодовые, болевые и др.

• Природа адекватного раздражителя: механо-, термо-, хемо-, фото-, баро-, осмбрецепторы и др.

• Среда, в которой рецептор воспринимает раздражитель: экстеро-, интерорецепторы.

• Отношение к одной или нескольким модальностям: моно- и полимодальные (мономодальные преобразуют в нервный импульс только один вид раздражителя — световой, температурный и т. д ., полимодальные могут несколько раздражителей преобразовать в нервный импульс — механический и температурный, механический и химический и т. д.).

• Способность воспринимать раздражитель, находящийся на расстоянии от рецептора или при непосредственном контакте с ним:

контактные и дистантные.

• Уровень чувствительности (порог раздражения): низкопороговые (механорецепторы) и высокопороговые (ноцицепторы).

• Скорость адаптации: быстроадаптирующиеся, (тактильные), медленноадаптирующиеся (болевые) и неадаптирующиеся (вестибулярные рецепторы и проприорецепторы).

• Отношение к различным моментам действия раздражителя: при включении раздражителя, при его выключении, на протяжении всего времени действия раздражителя.

• Морфофункциональная организация и механизм возникновения возбуждения: первичночувствующие и вторичночувствующие.

В первичночувствующих рецепторах стимул действует на воспринимающий субстрат, заложенный в самом сенсорном нейроне, который при этом возбуждается непосредственно (первично) раздражителем. К первичночувствующим рецепторам относятся: обонятельные, тактильные рецепторы и мышечные веретена.

К вторичночувствующим относятся те рецепторы, у которых между действующим стимулом и сенсорным нейроном располагаются дополнительные рецептирующие клетки, при этом сенсорный нейрон возбуждается не непосредственно стимулом, а опосредовано (вторично) — потенциалом рецептирующей клетки. К вторичночувствующим рецепторам относятся: рецепторы слуха, зрения, вкуса, вестибулярные рецепторы.

Механизм возникновения возбуждения у этих рецепторов различен. В первичночувствующем рецепторе транформация энергии раздражителя и возникновение импульсной активности идет в самом сенсорном нейроне. У вторичночувствующих рецепторов между сенсорным нейроном и стимулом расположена рецептирующая клетка, в которой под влиянием раздражителя идут процессы трансформации энергии раздражителя в процесс возбуждения. Но в этой клетке не возникает импульсной активности. Рецепторные клетки синапсами соединены с сенсорными нейронами. Под влиянием потенциала рецептирирующей клетки выделяется медиатор, который возбуждает нервное окончание сенсорного нейрона и вызывает в нем появление локального ответа — постсинаптического потенциала. Он оказывает деполяризующее действие на отходящее нервное волокно, в котором возникает импульсная активность.

Следовательно, у вторичночувствующих рецепторов локальная деполяризация возникает дважды: в рецептирующей клетке и в сенсорном' нейроне. Поэтому принято называть градуальный электрический ответ рецептирующей клетки рецепторным потенциалом, а локальную деполяризацию сенсорного нейрона генераторным потенциалом, имея в виду, что он генерирует в отходящем от рецептора нервном волокне распространяющееся возбуждение. У первичночувствующих рецепторов рецепторный потенциал является и генераторным. Таким образом, рецепторный акт можно изобразить в виде следующей схемы.

Для первичночувствующих рецепторов:

• I этап — специфическое взаимодействие раздражителя с мембраной рецептора;

• II этап — возникновение рецепторного потенциала в месте взаимодействия раздражителя с рецептором в результате изменения проницаемости мембраны для ионов натрия (или кальция);

• III этап — электротоническое распространение рецепторного потенциала к аксону сенсорного нейрона (пассивное распространение рецепторного потенциала вдоль нервного волокна называется электротоническим);

• IV этап — генерация потенциала действия;

• V этап — проведение потенциала действия по нервному волокну в ортодромном направлении.

Для вторичночувствующих рецепторов:

• I-III этапы совпадают с такими же этапами первичночувствующих рецепторов, но протекают они в специализированной рецептирующей клетке и заканчиваются на ее пресинаптической мембране;

• IV этап — выделение медиатора пресинаптическими структурами рецептирующей клетки;

• V этап — возникновение генераторного потенциала на постсинаптической мембране нервного волокна;

• VI этап — электротоническое распространение генераторного потенциала по нервному волокну;

• VII этап — генерация потенциала действия электрогенными участками нервного волокна;

• VIII этап — проведение потенциала действия по нервному волокну в ортодромном направлении.

Свойства периферического (рецепторного) отдела анализаторов. В деятельности каждого анализатора и его отделов независимо от характеристики раздражителей различают ряд общих свойств. Для периферического отдела анализаторов характерны следующие свойства.

1. Специфичность — способность воспринимать определенный, т. е. адекватный данному рецептору, раздражитель. Эта способность рецепторов сформировалась в процессе эволюции.

2. Высокая чувствительность — способность реагировать на очень малые по интенсивности параметры адекватного раздражителя. Например, для возбуждения фоторецепторов сетчатки глаза достаточно нескольких, а иногда и одного, квантов света. Обонятельные рецепторы информируют организм о появлении в атмосфере единичных молекул пахучих веществ.

3. Способность к ритмической генерации импульсов возбуждения в ответ на однократное действие раздражителя.

4. Способность к адаптации — т. е. способность приспосабливаться (“привыкать”) к постоянно действующему стимулу. Адаптация может выражаться в снижении активности рецептора и частоты генерации импульсов возбуждения, вплоть до полного его прекращения. В зависимости от скорости адаптации различают:

• быстроадаптирующиеся (тактильные);

• медленноадаптирующиеся (терморецепторы);

• неадаптирующиеся (вестибулярные и проприорецепторы). Выделяют несколько видов адаптации:

• изменение возбудимости рецептора в сторону снижения — десенсибилизация;

• изменение возбудимости в сторону повышения — сенсибилизация.

Адаптация проявляется в снижении абсолютной чувствительности рецептора и в повышении дифференциальной чувствительности к стимулам, близким по силе к адаптируемому. Сенсибилизация проявляется в стойком повышении возбудимости, которое вызывается многократными действиями пороговых раздражителей, наносимых один за другим.

Процессы адаптации в рецепторах могут определяться внешними и внутренними факторами. В качестве внешнего фактора в механизме адаптации могут выступать свойства вспомогательных структур. Так, например, причиной быстрой адаптации телец Пачини являются свойства вспомогательных структур — капсулы рецептора, которые не пропускают к нервному окончанию статической составляющей механического раздражения, в то время как динамическая составляющая раздражителя проходит через оболочки капсулы, хотя и уменьшается по амплитуде. Это предположение подтверждается тем, что после удаления капсулы рецептор начинает генерировать рецепторный потенциал в течение длительного действия раздражителя.

Внутренние факторы механизма адаптации связаны с изменениями физико-химических процессов в самом рецепторе. Например, выявлено различие в наборе натриевых и калиевых каналов в быстро- и медленноадаптирующихся рецепторах. Важную роль в явлениях адаптации играют эфферентные влияния от нервных центров. При наличии тормозной эфферентной регуляции процессы адаптации в рецепторах ускоряются.

5. Функциональная мобильность. Анализаторные системы способны изменять свою деятельность путем изменения количества функционирующих рецепторов в зависимости от условий окружающей среды и функционального состояния организма. Например, количество функционирующих вкусовых рецепторов больше в состоянии голода, а после приема пищи их количество уменьшается. При снижении температуры окружающей среды количество холодовых рецепторов кожных покровов увеличивается.

6. Низкая способность к аккомодации.

7. Специализация рецепторов к определенным параметрам адекватного раздражителя. Рецепторы, входящие в состав периферического отдела анализатора, неоднородны по отношению к различным моментам действия раздражителя. Имеются рецепторы, которые возбуждаются только в момент включения раздражителя, другие— только в момент выключения раздражителя, а третьи реагируют в течение всего времени действия раздражителя. Кроме того, имеются рецепторы, реагирующие на изменение интенсивности раздражителя или на его перемещение и т. д.

8. Способность к элементарному первичному анализу. Благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя, осуществляется элементарный первичный анализ последнего. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем уже на рецепторном уровне осуществляется анализ раздражителя по разным его характеристикам (параметрам).

9. Кодирование информации. Информация о действии химических, механических раздражителей, имеющих разнообразную природу, преобразуется рецепторами в универсальные для мозга сигналы — нервные импульсы. Таким образом рецепторы кодируют информацию о среде, т. е. преобразуя сигналы, непонятные мозгу, в сигналы, понятные ему.

Кодирование качества. Различение действующих на организм внешних раздражителей по их физической и химической природе происходит уже при первой встрече с ними соответствующих рецепторов. Это различение достигается избирательной чувствительностью рецепторов к определенному виду энергии и очень низкими порогами возбуждения. Глаз, например, возбуждается светом, но не реагирует на звук, а ухо чувствительно к звуку, но безразлично к свету и т. д. Как же мозг “узнает” модальность действующего раздражителя? Если потенциалы действия всех нервных волокон в принципе одинаковы, то почему раздражители разных модальностей ощущаются по-разному? Анализ отдельных признаков сенсорных стимулов в нервной системе не может основываться на показании только одного рецепторного образования, а должен осуществляться их совокупной деятельностью.

Сенсорный проводящий путь состоит из ряда модально-специфических нейронов, которые соединены синапсами. Такой принцип организации получил название меченой линии или топической организации. Суть этого принципа заключается в пространственно упорядоченном расположении нейронов на различных уровнях сенсорных систем соответственно характеристикам их рецептивных полей.

Рецептивное поле с морфологической точки зрения — это участок рецепторной поверхности, с которым данная нервная структура (волокно, нейрон) связана анатомически (жестко). С функциональной точки зрения — рецептивное поле — понятие динамическое, означающее, что один и тот же нейрон в различные отрезки времени в зависимости, например, от характеристики воздействия может оказаться связанным с различным числом рецепторов.

Принципу меченой линии противопоставлялась теория “структуры ответа”, согласно которой рецепторы кодируют качественные особенности раздражителей структурой импульсного ответа. Эта теория предполагала отсутствие жестких связей между рецепторами и центральными нейронами. Основанием для нее послужили экспериментальные данные, показавшие, что кодирование информации осуществляется не одиночными импульсами, а группой равномерно следующих потенциалов действия. В качестве сигнальных признаков могут быть использованы дополнительные параметры активности рецепторов, например, частота импульсации или продолжительность межимпульсных интервалов.

Для равномерно следующих импульсов сигнальными признаками могут служить число импульсов в пачке или продолжительность пачек, а также интервалы между ними и периодичность их следования. Такое кодирование открывает безграничные возможности, т. к. вероятны самые разнообразные вариации с пачками импульсов. Пространственно-временное распределение электрической активности нервных волокон называют паттернами. Разнообразные качества стимулов, согласно этой теории, отображаются характерными “узорами” паттернов. Нейроны способны расшифровать эти сигналы и в зависимости от их структуры формировать ощущение, которое соответствует раздражителю, кодируемого определенными паттернами.

Нейрон, по-разному реагируя на различные паттерны, может участвовать в выполнении нескольких функций. Каждый оттенок качества ощущения возникает в результате деятельности комплекса нейронов, образующих динамические ансамбли, формирование которых зависит от характера паттернов, приходящих от рецепторов.

Для каждой модальности имеется своя форма кодирования информации в соответствии с физическими свойствами различаемых стимулов. Одни качества распознаются сенсорными системами, функционирующими по принципу топической организации, другие кодируются паттернами. Например, распознавание многих качеств зрительных образов осуществляется меченными линиями, а вкусовые раздражители кодируются паттернами.

Кодирование интенсивности. Так как частота афферентной импульсации зависит от амплитуды рецепторного потенциала, которая в свою очередь пропорциональна интенсивности раздражения, то кодирование интенсивности стимула осуществляется посредством изменения частоты следования нервных импульсов от рецепторов в нервные центры. Увеличение интенсивности раздражителя кодируется увеличением частоты импульсной активности.

Между интенсивностью стимула и частотой потенциалов действия существует логарифмическая зависимость — ощущение увеличивается пропорционально логарифму интенсивности раздражения. Эта зависимость получила название закона Вебера-Фехнера, описавших ее.

Одним из способов кодирования интенсивности сенсорных стимулов является кодирование числом нервных элементов, участвующих в ответе. Этот способ кодирования имеет существенное значение, т. к. не все афференты обладают одинаковым порогом возбуждения. Есть основания полагать, что ЦНС “считывает” интенсивность по числу реагирующих элементов, умноженному на среднюю частоту импульсации. Таким образом, изменения интенсивности раздражителя отображаются колебаниями частоты импульсации в отдельных афферентных волокнах и количеством каналов связи, по которым сигнализация поступает в мозг.

Пространственное кодирование. В некоторых сенсорных системах естественная стимуляция рецепторов характеризуется тем или иным распределением локальных стимулов. Способность определять место или конфигурацию стимулов называется пространственным различением. В зрительной и слуховой системах выделены афферентные каналы, пространственно разнесенные в центральных структурах и связанные с обработкой информации о локализации источника раздражения, его перемещении, хроматических и частотных качествах сигнала.

Временное кодирование. Способность оценки времени неотделима от других аспектов кодирования. Частота нервных разрядов — это универсальная переменная величина, которая изменяется во времени. Кодирование информации осуществляется группой равномерно следующих импульсов. В качестве сигнальных признаков используются такие временные параметры выходных сигналов, как частота импульсации или продолжительность межимпульсных интервалов. Для временного различия двух раздражителей необходимо, чтобы нервные процессы, вызванные этими раздражителями, не сливались во времени.

Таким образом, уже на уровне рецепторов осуществляется первичное кодирование качества стимулов и их количественных характеристик — переход из присущей им формы физической и химической энергии в форму нервных импульсов. Преобразованная информация поступает на следующий уровень сенсорной системы, где подвергается дальнейшим преобразованиям, приводящим к изменению кода. Ни на одном уровне сенсорной системы не происходит восстановления стимула в его первоначальной форме, т. е. декодирование. Это основное отличие физиологического кодирования от большинства технических систем связи, где сообщение, как правило, восстанавливается в первоначальном, декодированном виде.


Дата добавления: 2015-05-19 | Просмотры: 974 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)