АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Ядерно-цитоплазматическое отношение

Прочитайте:
  1. A) дыхание с измененным соотношением между вдохом и выдохом
  2. Болезненный характер навязчивых мыслей осознается больным, к ним существует критическое отношение.
  3. В практике обычно берут объемное соотношение мономера к полимеру 1:3 или весовое 1:2.
  4. Важно соотношение сорбитдегидрогеназы и
  5. ВЗАИМООТНОШЕНИЕ ОПУХОЛИ И ОРГАНИЗМА
  6. Взаимоотношение психического и соматического в норме и патологии.
  7. Каково временное соотношение между фактическим закрытием аортального клапана, инцизурой и аортальным компонентом второго сердечного тона?
  8. Каково соотношение величин основного обмена у детей первых 3 – 4 лет жизни, в период полового созревания, в возрасте 18 – 20 лет и взрослых (ккал/кг/сутки)?
  9. Каково соотношение между градиентом давления на полулунном клапане и формой шума?
  10. Каково соотношение между пиком шума при стенозе легочной артерии и тяжестью обструкции?

Отношение объемов ядра и цитоплазмы; согласно гипотезе Р.Гертвига, выдвинутой в 1908, оно является определяющим в индуцировании клеточного деления, которое происходит после достижения этим показателем некоего критического значения (в интерфазе рост клетки при практически сохраняющемся объеме ядра ведет к постоянному снижению Я.-ц.о.).

1.3. ЯДРЫШКИ

Согласно электронно-микроскопическим исследованиям, ядрышки лишены какой-либо мембраны. Вещество их в основном состоит из субмикроскопических нитей и нуклеоплазмы. Ядрышки можно наблюдать, применяя специальные методы окрашивания, а также в ядрах некоторых живых клеток при использовании фазово-контрастного микроскопа или темнопольного конденсора.
На электронных микрофотографиях в ядрышках нередко видны две зоны: центральная - гомогенная и периферическая - построенная из гранулированных нитей. Эти гранулы напоминают рибосомы, но отличаются от них меньшей плотностью и величиной. Ядрышки богаты белками (80-85 %) и РНК (около 15 %) и служат активными центрами синтеза рибосомальной РНК. В соответствии с этим главной составной частью ядрышка является ядрышковая ДНК, которая принадлежит организатору ядрышек одной из хромосом.
содержание РНК заметно колеблется, в зависимости от интенсивности обмена веществ в ядре и цитоплазме. Ядрышки не присутствуют в ядре постоянно: они возникают в средней телофазе митоза и исчезают в конце профазы. Полагают, что по мере затухания синтеза РНК в средней профазе происходят разрыхление ядрышка и выход в цитоплазму образовавшихся в нуклеоплазме субчастиц рибосом. При исчезновении ядрышка во время митоза его белки, ДНК и РНК, становятся основой матрикса хромосом, а в дальнейшем из материала старого ядрышка формируется новое.
Установлена связь ядрышек с хромосомами, имеющими спутников, поэтому число ядрышек соответствует числу спутничных хромосом. Нуклеолонемы сохраняются на протяжении всего цикла клеточного деления и в телофазе переходят от хромосом к новому ядрышку.

1.4. ЯДЕРНАЯ МЕМБРАНА

Неделящееся клеточное ядро заключено в плотную и упругую оболочку, которая растворяется и вновь восстанавливается в процессе деления клетки. Это образование отчетливо видно лишь на некоторых объектах, например у гигантских ядер слизевых клеток алоэ толщина мембраны достигает 1 мкм. В световом микроскопе структуру ядерной оболочки удается наблюдать лишь у плазмолизированных клеток, фиксированных и окрашенных.
Детальное изучение ядерной мембраны стало возможным с появлением электронной микроскопии. Исследования показали, что наличие ядерной оболочки характерно для всех эукариотических клеток. Она состоит из двух элементарных мембран толщиной 6-8 нм каждая - внешней и внутренней, между которыми находится перинуклеарное пространство шириной от 20 до 60 нм. Оно заполнено энхилемой - сывороткообразной жидкостью с низкой электронной плотностью.
Итак, ядерная мембрана представляет собой полый мешок, отделяющий содержимое ядра от цитоплазмы, и состоит из двух слоев: внешний слой ограничивает перинуклеарное пространство снаружи, т. е. со стороны цитоплазмы, внутренний - изнутри, т. е. со стороны ядра. Из всех внутриклеточных мембранных компонентов подобным строением мембран обладают ядро, митохондрии и пластиды.
Морфологическое строение каждого слоя такое же, как и внутренних мембран цитоплазмы. Отличительная особенность ядерной оболочки - наличие в ней пор - округлых перфораций, образующихся в местах слияния внешней и внутренней ядерных мембран. Размеры пор довольно стабильны (30-100 нм в диаметре), в то же время их число изменчиво и зависит от функциональной активности клетки: чем активнее идут в ней синтетические процессы, тем больше пор приходится на единицу поверхности клеточного ядра.
Обнаружено, что количество пор увеличивается в период реконструкции и роста ядра, а также при репликации ДНК. Одно из крупнейших открытий, сделанных с помощью электронной микроскопии, - обнаружение тесной взаимосвязи между ядерной оболочкой и эндоплазматической сетью. Поскольку ядерная оболочка и тяжи эндоплазматической сети во многих местах сообщаются между собой, перинуклеарное пространство должно содержать ту же сывороткообразную жидкость, что и полости между мембранами эндоплазматической сети.
При оценке функциональной роли ядерной оболочки большое значение приобретает вопрос о ее проницаемости, обусловливающей обменные процессы между ядром и цитоплазмой в связи с передачей наследственной информации. Для правильного понимания ядерно-цитоплазматических взаимодействий важно знать, насколько ядерная оболочка проницаема для белков и других метаболитов. Опыты показывают, что ядерная оболочка легко проницаема для относительно крупных молекул. Так, рибонуклеаза - фермент, гидролизующий рибонуклеиновую кислоту без выделения свободной фосфорной кислоты, - имеет молекулярную массу около 13000 и очень быстро проникает в ядро.
Даже в корешках, фиксированных видоизмененным методом замораживания, можно наблюдать, как окрашивание ядрышек подавляется во всех клетках уже через 1 ч после обработки рибонуклеазой.

1.5. КАРИОПЛАЗМА

Кариоплазма (ядерный сок, нуклеоплазма) - основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.
Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.
Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, - хроматина.

1.6. ХРОМАТИН

Термин «хромосома» используется по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информации вируса, прокариота или эукариотической клетки. Однако первоначально слово «хромосома» (т. е. «окрашенное тело») использовалось в другом смысле, - для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем.
Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.
Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

  • эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
  • гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон, которые содержат 60 % белка, 35 % ДНК и, вероятно, 5 % РНК. Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

Ядерная оболочка состоит из внешней ядерной мембраны и внутренней мембраны, которые разделяются перинуклеарным пространством или цистерной ядерной оболочки. В ядерной оболочке содержатся ядерные поры. Число ядерных пор зависит от метаболической активности клетки: чем она выше, тем больше пор на единицу поверхности клеточного ядра.

Основные функции ядерной оболочки заключаются в том, что она отделяет содержимое ядра от цитоплазмы, ограничивает доступ в ядро крупных агрегатов биополимеров, регулирует транспорт макромолекул между ядром и цитоплазмой, участвует в фиксации хромосомного материала в ядре. Таким образом, ядро является носителем генетического материала и местом, где осуществляется его функционирование и воспроизведение.


Дата добавления: 2015-05-19 | Просмотры: 2810 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)