АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Роль наследственных факторов в патологии человека. Хромосомные и молекулярные болезни

Прочитайте:
  1. A) ответная реакция организма, возникающая под воздействием повреждающих факторов
  2. A. пищеварения у человека. Составить схему.
  3. APUD – СИСТЕМА (СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ, БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ В НОРМЕ И ПАТОЛОГИИ)
  4. B) развитие онкопатологии
  5. Cовременные взгляды на атопические болезни как на системные заболевания. Алергические заболевания, класификация, клинические примеры.
  6. F07 Расстройства личности и поведения вследствие болезни, повреждения и дисфункции головного мозга
  7. I. Инфекционные болезни
  8. II. Болезни эндокринной части поджелудочной железы (ЭЧПЖ).
  9. II. Болезни, при которых деменция сопровождается другими неврологическими проявлениями, но нет явного наличия другого заболевания
  10. II. Мероприятия в отношении механизмов, путей и факторов передачи

Все наследуемые признаки человека записаны с помощью генетического кода в макромолекулярной структуре ДНК. Двойная спираль ДНК, взаимодействуя со щелочными белками (пистонами), образует сложную надмолекулярную структуру – хромосому. Каждая хромосома содержит одну непрерывную молекулу ДНК, имеет определенный генный состав и может передавать только ей присущую наследственную информацию. Хромосомный набор (кариотип) человека включает 22 пары аутосом и 2 половые – XX или ХУ – хромосомы.

Несмотря на сложившуюся в процессе эволюции значительную стабильность генетического материала и наличие ДНК-репарирующих ферментов (энзимов, исправляющих ошибки репликации ДНК), под влиянием различных физических (ионизирующая радиация, ультрафиолетовые лучи), химических (алкирующие и другие соединения) и биологических (вирусы) факторов возможны изменения структуры ДНК – мутации. Учитывая наличие в геноме эукариот мигрирующих нуклеотидных последовательностей и транспозонов, под мутацией следует понимать изменение структуры ДНК, незапрограммированное в геноме и имеющее фенотипическое выражение.

Мутации в половых клетках фенотипически проявляются в виде наследственного предрасположения или наследственного заболевания. Наследственная предрасположенность – это генетически обусловленная повышенная подверженность какому-либо заболеванию, которая реализуется в определенных условиях среды. О наследственной болезни говорят в том случае, когда повреждение ДНК проявляется без дополнительного воздействия факторов среды. Все наследственные болезни человека подразделяются на две группы: молекулярные болезни, имеющие в своей основе точечный дефект на нити ДНК, и хромосомные, для которых характерно более грубое повреждение генетического материала.

Молекулярные болезни – обширная группа заболеваний, природа которых связана с повреждением отдельных генов. Сейчас известно более 2500 молекулярных болезней. Причиной данной патологии являются генные (точечные) мутации, т. е. изменения последовательности нуклеотидов в молекуле ДНК. Характер патологии зависит от локализации повреждения на нити ДНК. В генетическом аппарате эукариот имеются функционально различные участки: промотор – небольшая зона ДНК, узнающаяся РНК-полимеразой и факторами инициации транскрипции, регуляторные участки – энхансеры (усилители) и сайленсеры (ослабители) транскрипции, зона терминации транскрипции, а также структурные гены, определяющие последовательность аминокислот в молекуле белка. Большинство генов эукариот имеет прерывистую структуру: последовательности нуклеотидов, кодирующие белок (экзоны), чередуются с участками, не несущими информации (интроны). В ядре синтезируется про-м-РНК-копия всего гена. Далее здесь же в ядре все несмысловые участки вырезаются, а концы кодирующих последовательностей соединяются. Этот процесс назван сплайсингом. В одном и том же гене сплайсинг может протекать разными способами (альтернативный сплайсинг), т. е. под контролем одного гена в принципе могут синтезироваться несколько полипептидов с различной аминокислотной последовательностью.

Реализуется сплайсинг с помощью специализированных ферментов, а также за счет аутокатализа, когда роль фермента (рибозима) выполняет сама про-м-РНК.

Мутации, затрагивающие область промотора или регуляторные участки, приводят к изменению количества синтезируемого белкового продукта, но сам белок остается неизменным. Мутации структурного гена ведут к изменению первичной структуры белка. Мутация в области интрона может остаться без последствий, однако изменение сигнальной последовательности нуклеотидов на границе экзона и интрона может привести к нарушению процесса аутосплайсинга.

При мутации экзонов возможны следующие патологические изменения:

1) при мутации со «сдвигом рамки» может синтезироваться белок с резко измененной структурой и нарушенной функцией;

2) мутация может превращать бессмысленный (терминаторный) триплет в смысловой – синтезируется полипептидная цепь большей длины, чем в норме;

3) мутация может превращать смысловой триплет в терминаторный – происходит синтез укороченной полипептидной цепи;

4) мутация может приводить к изменению смысла кодона, что вызовет замену аминокислоты в полипептидной цепи.

Нарушение работы ферментов сплайсинга и рибозимов фенотипически проявляется также как мутация структурного гена.

Важным этапом в реализации генетической программы является посттранскрипционная модификация м-РНК. К одному концу м-РНК присоединяется отрезок поли-А, состоящий из 50 – 200 идениловых нуклеотидов. Другой конец м-РНК подвергается кэпированию, т. е. соединяется с химической группировкой, содержащей метилгуанозин. Нарушение этих процессов приводит к сокращению времени жизни м-РНК, к ее быстрому разрушению нуклеазами и, следовательно, невозможности трансляции генетической информации.

Вышедшая из ядра м-РНК соединяется с цитоплазматическими белками с образованием нуклеопротеидных частиц – информосом. При патологии информосом нарушается регулируемое поступление м-РНК в белоксинтезирующую систему.

Таким образом, основу молекулярных болезней составляет нарушение синтеза различных белков организма. Патология может касаться структурных, транспортных, рецепторных, антигенных белков, но чаще всего страдают белки-ферменты и большинство молекулярных болезней носит характер энзимопатий. Если в результате мутации изменен активный центр фермента – нарушается его каталитическая активность и сродство к субстрату; если затронут аллостерический центр – нарушается регуляция активности фермента метаболитами и гормонами.

Для диагностики наиболее распространенных энзимопатий используются простые экспресс-методы – так называемые скрининг-тесты (скрининг – просеивание). Скринирование энзимопатий основано на определении активности аномального фермента, изучении количества конечных продуктов реакции и предшественников, а также на выявлении необычных продуктов обмена в биологических жидкостях.

При хромосомных болезнях и синдромах световая микроскопия позволяет выявить изменения хромосомного набора либо в виде анэуплоидий, т. е. изменения числа аутосом (болезнь Дауна, синдромы Эдвардса и Патау) или половых хромосом (синдромы Клайнфельтера, Шерешевского – Тернера, трисомии-Х), либо в виде изменения структуры хромосом (делеции, дупликации, инверсии, транслокации). Причиной анэуплоидий является нерасхождение хромосом в процессе митоза или мейоза. Замечено повышение частоты нерасхождения с увеличением возраста матери.

В настоящее время описано более 100 различных хромосомных синдромов. Около 50 % всех случаев спонтанных абортов связаны с аномалиями хромосом. При этом хромосомные дефекты, унаследованные от предыдущих поколений, составляют лишь 1,3 % среди спонтанных абортов и 5,9 % среди мертворождений. Следовательно, чаще всего хромосомные аберрации являются результатом первичного нарушения гаметогенеза в родительском организме или появляются в процессе развития зародыша.

Для диагностики хромосомных болезней проводят исследование хромосомного набора человека (кариотипа), а также определяют Х– и Y-половой хроматин, что позволяет обнаружить изменение числа половых хромосом в кариотипе. Важным экспресс-методом диагностики хромосомных болезней является исследование дерматоглифического фенотипа – наследственных особенностей кожного рисунка.


Дата добавления: 2015-05-19 | Просмотры: 716 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)