АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Растительные ферменты
Ферменты зерна. В практической деятельности человека с древних времен применяются ферменты зерновых культур. Зерно злаков богато запасными веществами, которые используются в энергетическом и конструктивном метаболизме при прорастании зерна. Превращение крахмала, крахмальных полисахаридов, белка, липидов начинается с их гидролитического расщепления. Продукты расщепления используются в циклах дыхания и биосинтеза структурных элементов растения. В покоящемся зерне имеютсяферменты, необходимые для гидролиза всех видов полимеров. Значительная часть гидролитических ферментов находится в связанном, неактивном состоянии. Активность свободных форм гидролаз не проявляется из-за отсутствия свободной воды, необходимой для протекания реакций гидролиза. В зерне имеются ингибиторы протеолитических ферментов и α-амилазы. Ингибиторы протеаз превращают протеолитический процессинг связанных ферментов и их переход в свободные, активные формы.
При соответствующей температуре и влажности зерно набухает и прорастает. Процесс прорастания сопровождается увеличением активности большинства ферментов. Ингибиторы протеаз – белки низкой молекулярной массы – диффундируют во внешнюю среду, что создает условия для проявления активности протеаз. Под действием протеаз активируются связанные формы ферментов. Параллельно происходит новообразование ферментов.
Проросшее зерно (солод) является богатейшим источником ферментов. Ферментативный комплекс солода включает: амилолитические ферменты (α-амилазу, β-амилазу, α-глюкозидазу, пуллуланазу, предельную декстриназу), β-фруктофуранозидазу, целлюлолитические ферменты (эндо- и экзоглюканазы, целлобиазу), гемицеллюлазы (эндо-β-1,3-глюканазу, ламинарибиазу, эндо- и экзосиланазы, ксилобиазу, арабинозидазу), протеазы эндо- и экзо-типов, липазы, фосфотазы, окислительно-восстановительные ферменты (каталазу, пероксидазу, о-дифенолоксидазу).
Рациональная технология солода обеспечивает получение максимальной активности гидролитических ферментов при минимальных затратах массы зерна на дыхание. Активность ферментов в процессе прорастания изменяется в зависимости от влажности зерна, температуры среды, продолжительности выращивания, способа аэрации. Оптимальные режимы солодоращения для разных культур различны (табл 8.1). При получении сухого солода его активность зависит от способа сушки.
Таблица 8.1. Оптимальные режимы солодоращения
Культура
| Температура, °С
| Влажность зерна, %
| Продолжительность проращивания, сут
| Ячмень двухрядный
Ячмень шестирядный
Рожь
Пшеница
Овес
Кукуруза
| 13-15
17-19
18-20
16-18
15-18
18-20
|
47–48
48–50
46–48
42–43
46–48
|
3–4
5–6
|
Наибольшее применение находят ячменный и ржаной солод, первый в – пивоварении, второй – в хлебопечении и при приготовлении квасного сусла. Высокой ферментативной активностью обладает солод из шестирядного озимого ячменя. Амилолитическая, осахаривающая и протеолитическая активность соответственно в 1,5–2, 2–3 и 3–5 раз выше, чем в солоде из двухрядного пивоваренного ячменя.
Ферменты различных видов солода имеют сходные свойства.
α-Амилаза присутствует в покоящемся зерне в незначительных количествах. Фермент активно синтезируется в процессе прорастания. Синтез индуцируют гиббереллины, образующиеся в ростке. Максимальная активность α-амилазы найдена в алейроновом слое. Оптимальные условия действия фермента: рН 5,6–5,8, температура 60–65°С (табл 8.2). В заторах температурный оптимум повышается до 70–75°С, а предел термостабильности – до 80°С, что связано со стабилизирующим действием высоких концентраций крахмала в заторах. α-Амилаза солода активируется ионами кальция и хлора, ингибируется ионами железа, хрома, меди. В солоде присутствует два фермента α-амилазы. При длительном гидролизе крахмала солодовой α-амилазой получают смесь сахаров, состоящую на 87% из мальтозы и на 13% - из глюкозы.
β-амилаза находится в зерне в свободной и связанной форме. Связанная форма локализуется только в эндосперме. Активация ее происходит под действием протеаз и тиоловых агентов. β-амилаза накапливается в зерне в интервале от 2 до 5 суток проращивания, основная активность сосредоточена в алейроновом слое. Фермент имеет оптимум действия в разбавленных растворах крахмала при рН 4,6 – 5,6 и температуре 40 – 500С, в заторах крахмалистого сырья – при 60 – 65°С. Стабилен при рН 4 – 8 и температуре до 60°С, в заторах – до 70°С. Ингибиторы – ионы тяжелых металлов, галогены, озон.
Табл. 8.2 Гидролитические ферменты ячменного солода.
Фермент
| Оптимум действия
| Стабильность
| рН
| Температура
| рН
| Температура
| α-амилаза
в растворе крахмала
в заторе
|
5,6 – 5,8
-
|
60 – 65
70 – 75
|
5 – 9
-
|
| β-амилаза
в растворе крахмала
в заторе
|
4,6
5,4 – 5,6
|
40 – 50
60 – 65
|
4 – 8
-
|
| Пуллулиназа
| 5,3
|
| -
|
| Предельная декстриназа
в растворе крахмала
в заторе
|
5,1
5,1
|
55 – 60
|
-
-
|
-
| α-глюкозидаза
| 6,0
| 35 – 40
| -
|
| β-фруктофуранозидаза
| 5,5
|
| -
| -
| Цитолитический комплекс (целлюлазы и гемицеллюлазы)
| 4,5 – 5,0
| 40 – 45
| -
|
| Протеолитический комплекс
эндопептидаза
в растворе белка
в заторе
лейцинаминопептидаза
дипептидаза
|
4,7
5,0 – 5,2
7,2
7,8 – 8,2
|
50 – 60
40 – 45
40 – 50
|
-
-
-
-
|
>50
>50
| Липаза
| 6,8
| 2,8
| -
|
| Фосфотаза
| 4,5 – 5,0
|
| -
| <70
|
β-Амилаза расщепляет амилозу на 100% с образованием мальтозы. Гидролизу амилопектина препятствуют точки ветвления, вокруг которых долго сохраняются негидролизованные фрагменты полиглюкозидных цепочек. Крахмал в целом расщепляется с образованием около 50% мальтозы и такого же количества предельного β-декстрина, дальнейшее расщепление которого может происходить при добавлении α-амилазы. Полный комплекс амилолитических ферментов солода гидролизует зерновой крахмал на 100%.
При прорастании зерна существенно увеличивается активность β-фруктофуранозидазы, эндо- и экзоглюканаз (в 10 раз), эндоксиланазы (в 3 раза), экзоксиланазы (в 2 раза), эндопептидазы (в 5–6 раз), экзопептидаз (в 1,5–10 раз), фосфатаз (в 5–10 раз), липазы (в 2 раза).
Протеолитический комплекс солода включает эндо- и экзопептидазы. Эндопептидазы в зерне представлены свободной и связанной формой. Переход в свободную форму происходит за счет удаления ингибиторов (их протеолиза, диффузии во внешнюю среду). В комплексе экзопептидаз идентифицированы карбоксипептидаза, магнийсодержащая лейцинаминопептидаза и дипептидаза. Протеолитические ферменты солода гидролизуют белок в зоне рН 4–9. Этот диапазон соответствует изменению величины рН в различных участках прорастающего зерна, что связано с гидролизом белка, превращениями аминокислот, синтезом органических кислот. Эти изменения отражаются в возрастании титруемой кислотности в процессе проращивания в 4–5 раз при незначительном увеличении средней величины рН (с 6 до 6,25).
Сушка солода приводит к изменению абсолютной активности ферментов и соотношения ферментативных активностей, что объясняется ограниченной и различной термостабильностью компонентов ферментативного комплекса. В результате сушки амилолитическая активность светлого солода снижается на 30–40%, темного – на 70%. Потери происходят в основном за счет термоинактивации β-амилазы, α-амилаза более стабильна. Снижение пептидазной активности при сушке светлого солода (температура 95–100° С) незначительно. В темном солоде, который сушат в интервале температуры 112–120°С, наблюдается существенное снижение пептидазной и фосфатазной активности. Высокоферментативный солод из шестирядного ячменя рекомендуют сушить при температуре 72-80°С.
Тиоловые протеазы растений
Тиоловые растительные протеазы – папаин, химопапаины А и В, бромелаин и фицин – являются ферментами широкой субстратной специфичности. Они гидролизуют пептидные связи, образованные лейцином или глицином, которые часто встречаются в белках (см. лекцию 7).
Папаин выделяют из срка дынного дерева путем фракционированного осаждения органическими растворителями. Аналогично получают бромелаин из сока зеленых стеблей ананаса и фицин – из сока стеблей тропического инжира. Промышленный выпуск тиоловых протеаз растений производится в тропических странах, где произрастает сырье.
В пищевых отраслях широко применяется папаин, который изготовляют в различных товарных формах.
В последние годы в нашей стране освоен выпуск препаратов папаина из незрелых плодов дынного дерева, которые ввозят из Эквадора. В выделяемом ферментном препарате содержится 60% белка, протеолитическая активность которого составляет 750 – 1000 ед/г (по методу Ансона, субстрат – казеинат атрия). Ферментный комплекс включает: папаин, химопапаин, пептидазу А, незначительное количество лизоцима. Производится также иммобилизованная форма препарата (носитель – нейлоновое полотно), с высокой термо- и операционной стабильностью.
Дата добавления: 2015-08-06 | Просмотры: 671 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|