АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Фазы реполяризации потенциала действия

Прочитайте:
  1. AT : химич. Природа, строение, свойства, механизм специфического взаимодействия с АГ
  2. B-лактамазы широкого спектра действия
  3. I. Нифедипин короткого действия (10 мг)
  4. III. Усвоение новых знаний и способов действия.
  5. IV. Механизм действия перелитой крови.
  6. IV. Принцип действия и конструктивное исполнение прибора ИПП-2.
  7. XI. Что необходимо для противодействия антипрививочному движению в России?
  8. А) короткого действия.
  9. АГС миотропного действия
  10. АГС нейротропного действия, влияющие на периферические звенья регуляции тонуса сосудов.

 

Потенциалы действия, зарегистрированные в волокнах Пуркинье и в некоторых волокнах миокарда желудочков, имеют короткую, быструю фазу реполяризации (фаза 1), следующая непосредственно за фазой нарастания (см. рис. 3.1). Во время этой фазы мембранный потенциал временно возвращается почти к нулевому уровню, от которого начинается фаза плато потенциала действия, поэтому между этими двумя фазами на кривой иногда наблюдается четкий изгиб. Как было показано (в волокнах Пуркинье), быстрая реполяризация обусловлена транзиторным всплеском выходящего тока [30]. Во время нарастания потенциала действия этот выходящий ток активируется при деполяризации до уровня положительного потенциала, после чего он инактивируется как вследствие зависимого от времени процесса, так и в результате реполяризации. Хотя раньше считалось, что этот выходящий ток переносится преимущественно ионами хлора, в настоящее время более вероятным представляется его перенос главным образом ионами калия и лишь отчасти — ионами хлора [29].

Во время фазы плато потенциала действия, которая может длиться сотни миллисекунд, скорость реполяризации мембраны значительно ниже, так как суммарная величина выходящего мембранного тока невелика; входящие токи, сохраняющиеся в результате неполной инактивации натриевых и кальциевых каналов, приблизительно сбалансированы направленными наружу мембранными токами [30, 31]. По крайней мере один из них, вероятнее всего, является калиевым током, проходящим через ворота каналов, проводимость которых зависит от времени и потенциала. Активация их проводимости (только медленная) отмечается на уровне плато мембранного потенциала. Небольшой вклад в выходящий (реполяризующий) мембранный ток при этом уровне потенциала вносит и направленное внутрь движение ионов хлора, а также активность Na—К-насоса, генерирующего суммарный выходящий ток Na+ [39]. По мере того как суммарный трансмембранный ток на уровне потенциала плато (т. е. алгебраическая сумма всех компонентов входящего и выходящего токов) становится более выходящим, мембранный потенциал все быстрее смещается в отрицательном направлении и начинается конечная быстрая фаза реполяризации потенциала действия. Эта конечная реполяризация, как и начальная фаза быстрой деполяризации, является регенеративной, но в отличие от фазы нарастания она, вероятно, включает изменения проводимости, зависящие главным образом от потенциала, а не от времени, и, следовательно, отражает время, затрачиваемое выходящим ионным током на обеспечение необходимой проводимости мембраны [34].

 


Дата добавления: 2015-08-26 | Просмотры: 662 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)