АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Циркуляция вследствие дисперсии рефрактерности

Прочитайте:
  1. B. активаци свёртывания крови вследствие снижения выработки гепарина
  2. B. почечная - вследствие нефрита
  3. Анемии вследствие кровопотери
  4. Анемии вследствие кровопотери
  5. Анемии вследствие кровопотерь
  6. Анемии вследствие кровопотерь (постгеморрагические)
  7. Анемии вследствие нарушения кровообразования
  8. Анемии вследствие нарушения кровообразования.
  9. АНЕМИИ ВСЛЕДСТВИЕ НАРУШЕНИЯ ОБРАЗОВАНИЯЭРИТРОЦИТОВ И ГЕМОГЛОБИНА
  10. Анемии вследствие нарушенного кровообразования.

 

Циркуляция может наблюдаться и в отсутствие вызванного заболеванием стойкого снижения мембранного потенциала покоя и угнетения деполяризации в нулевую фазу. Однако и в этом случае двумя основными условиями возникновения циркуляции остаются медленное проведение и однонаправленный блок. Оба условия действительны для волокон здорового сердца, если преждевременные импульсы возникают в пределах относительного рефрактерного периода, особенно если рефрактерные периоды соседних групп сердечных волокон существенно различаются. Различия в рефрактерных периодах соседних групп миокардиальных волокон могут усиливаться при заболевании сердца. Ниже приводятся примеры циркуляции, вызванной такой дисперсией рефрактерности.

Рефрактерные периоды клеток нормального АВ-узла значительно варьируют. Группы клеток предсердной части узла (область ПУ), по-видимому, включают по крайней мере две популяции с различными рефрактерными периодами (рис. 3.16) [78]. В соответствующих условиях подобное различие в рефрактерности клеток верхней части узла может привести к образованию функциональных путей циркуляции [78]. В норме синусовый импульс достигает АВ-узла лишь после восстановления возбудимости обеих групп клеток и таким образом проводится через все эти волокна к пучку Гиса. Точно так же (т. е. по всем волокнам АВ-узла) распространяется преждевременный предсердный импульс, возникающий достаточно поздно относительно длительности основного цикла. Однако в случае частого нерегулярного ритма или ранних экстравозбуждений неоднородность рефрактерности волокон верхней части АВ-узла начинает играть значительную роль в проведении. Ранние преждевременные импульсы, проходящие из предсердий в АВ-узел, могут встретить на своем пути участок с однонаправленным блоком, где длительность рефрактерного периода клеток наибольшая; однако возбуждение сможет проводиться, хотя и медленно, по волокнам верхней части узла, эффективный рефрактерный период которых меньше (см. рис. 3.16). Если скорость проведения раннего преждевременного возбуждения по этим волокнам достаточно мала, импульс может ретроградно пройти в зону однонаправленного блока после того, как восстановится возбудимость волокон этой зоны; затем он вернется в предсердия и повторно возбудит их как циркулирующий импульс или «возвратная экстрасистола» (см. рис. 3.16). Антероградный путь проведения с более коротким рефрактерным периодом был назван Mendez и Мое «альфа-путем», а ретроградный путь с более продолжительным рефрактерным периодом — «бета-путем» [78]. Так как нижняя область АВ-узла не является частью пути циркуляции [78], преждевременный предсердный импульс может циркулировать независимо от наличия или отсутствия проведения возбуждения и в антероградном направлении для активации пучка Гиса и желудочков.

 

 

Рис. 3.16. Циркуляция предсердного импульса в АВ-узле. Фрагменты А и Б— схематическое изображение АВ-узла, в котором выделены верхняя (ПУ), средняя (У) и нижняя (У Г) области; ПГ обозначает пучок Гиса. Фрагмент А — потенциалы действия, зарегистрированные с двух участков верхней области узла: потенциал действия слева имеет более короткий рефрактерный период, чем потенциал действия справа (отмечено штриховкой). Следовательно, при преждевременном вхождении предсердного импульса в АВ-узел (стрелки) он способен продвигаться только по той части верхней области АВ-узла, где рефрактерный период короче, и блокируется на участке с более длительным рефрактерным периодом. Это также видно на кривых потенциала действия, помещенных вверху.

Фрагмент В — возможное развитие событий: распространяющиеся импульсы (стрелки) могут, вернувшись, возбудить ту область АВ-узла, в которой существует блок антеградного проведения, и таким образом вновь войти в предсердие; потенциал действия, зарегистрированный в цепи возврата, показан выше. Импульс может также проходить по пучку Гиса [16].

 

 

Описанные выше механизмы однократной циркуляции предсердных импульсов в АВ-узле могут обусловить и постоянную циркуляцию. Если импульс циркулирует в предсердии, где волокна узла, ранее возбужденные им антероградно, восстановили свою возбудимость, он может снова войти в АВ-узел и проводиться по замкнутой цепи [79—81]. Этот процесс может стать повторяющимся: предсердия будут активироваться всякий раз, когда волна возбуждения пройдет по цепи циркуляции. Таков один из возможных механизмов наджелудочковой тахикардии; более подробно это обсуждается в главе 10.

Различия в рефрактерности соседних групп клеток также могут вызвать циркуляцию в проводящих тканях предсердий [82, 83], желудочков [84] и волокон Пуркинье [85, 86] с нормальными электрофизиологическими характеристиками, причем патологические изменения, усиливающие локальные различия в рефрактерности, естественно, способствуют развитию циркуляции [87]. Как и в приведенном выше примере циркуляции в АВ-узле, здесь для возникновения циркуляции требуется преждевременный импульс. Циркуляция в предсердии, обусловленная механизмом ведущего цикла [83], описана в главе 6. Циркуляция вследствие дисперсии рефрактерности в системе волокон Пуркинье, сохранившихся в зоне инфаркта миокарда, представлена на рис. 3.17. Потенциал действия в этих волокнах чрезвычайно продолжителен, как и рефрактерные периоды (относительный и эффективный) по сравнению с таковыми в волокнах Пуркинье, окруженных участками ткани, не пораженной инфарктом. Кроме того, длительность потенциала действия соседних волокон в зоне инфаркта неодинакова: потенциал действия, как и рефрактерность, в одних волокнах более продолжителен, чем в других. В результате значительной разницы в длительности абсолютного рефрактерного периода клеток соседних участков ранний преждевременный импульс блокируется на участке с наибольшим абсолютным рефрактерным периодом, медленно проводясь тем временем по относительно рефрактерным участкам с менее продолжительным абсолютным рефрактерным периодом (см. рис. 3.17, а). Пока импульс медленно проводится через возбудимую ткань, возбудимость в зоне блока восстанавливается, так что преждевременный импульс в конечном счете возбуждает и эту зону, а затем возвращается к месту своего возникновения как циркулирующая волна. Циркуляция, вызванная таким механизмом, тоже может быть повторяющейся и способна привести к тахикардии.

 

 

 

Рис. 3.17. Механизм циркуляции импульсов вследствие дисперсии рефрактерности в сети субэндокардиальных волокон Пуркинье, покрывающих область обширного инфаркта миокарда. а и б — эндокардиальная поверхность передней папиллярной мышцы левого желудочка (слева) и передней части межжелудочковой перегородки (справа). Более светлые участки на а и б — область инфаркта, покрытая сетью выживших волокон Пуркинье [53]. Потенциалы действия и рефрактерный период в волокнах Пуркинье на разных участках существенно различаются по длительности. Потенциалы действия зарегистрированы в выживших при инфаркте субэндокардиальных волокнах Пуркинье на границе между зоной инфаркта и нормальной тканью (l)f а также в субэндокардиальных волокнах Пуркинье с более продолжительной фазой реполяризации (2 и 3) [S3], а—преждевременный импульс (ПИ) возникает в точке 1 на границе зоны инфаркта и проходит внутри этой зоны (как показано изогнутыми стрелками), где потенциалы действия более продолжительные; при инфракте потенциал действия в точке 3 длительнее, чем в точке 2. Следовательно, преждевременный импульс может возбудить клетки в точке 2, но проведение заблокируется в точке 3. б — дальнейшее развитие событий: ПИ, пройдя через точку 2, активизирует клетки в точке 3 как циркулирующий импульс (ЦП), а затем возвращается к исходной точке (I), которую он также возбуждает как циркулирующий импульс [16].

 

 

Преждевременные импульсы, безусловно ответственные за циркуляцию описанных выше типов, могут возникать несколькими путями. Например, они могут появиться спонтанно в синусовом узле или в эктопическом водителе ритма; их можно также вызвать электрической стимуляцией сердца.

 


Дата добавления: 2015-08-26 | Просмотры: 622 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)