АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Гальмівне рентгенівське випромінювання

Прочитайте:
  1. БІОЛОГІЧНА ДІЯ ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ
  2. ЗАГАЛЬНА КЛАСИФІКАЦІЯ ДОЗИМЕТРИЧНИХ ПРИЛАДІВ ТА МЕТОДИ ВИЗНАЧЕННЯ ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ
  3. Загальне вчення про хворобу. Етіологія та патогенез. Вплив іонізуючого випромінювання.
  4. КОРОТКА ХАРАКТЕРИСТИКА ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ
  5. Основні дози випромінювання, які використовуються у медицині, та їх кількісне значення
  6. ОСНОВНІ ОДИНИЦІ ТА МЕТОДИ ВИМІРЮВАННЯ ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ
  7. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі

 

Суцільний спектр одержується в результаті гальму­вання швидких електронів у речовині антикатода. Якщо між катодом і антикатодом прикладена напруга , електрони розганяються і їх енергія дорівнює , де - заряд

електрона. Влітаючи в антикатод, електрони різко гальму­ються, тобто рухаються з від'ємним прискоренням, і стають джерелами рентгенівського електромагнітного випроміню­вання.

Умови гальмування для різних електронів неоднакові, і різні частки їх кінетичної енергії перетворюються в енергію рентгенівських квантів. При повному перетворенні енергії електрона в енергію кванте дістанемо , де - стала Планка, - найбільша частота рентгенівського гальмівного спектра. Враховуючи, що - швидкість світла у вакуумі, - гранична довжина хвилі випромінювання, яка відповідає ), дістанемо , звідки

(8.1)

З цієї причини в гальмівному рентгенівському спектрі спостерігаються всі довжини хвиль, починаючи з . Його називають тому.суцільним "білим спектром".

Розподіл інтенсивності по неперервному спектру рент­генівських променів при різних для вольфрамового анти­катода наведено на рис. 8.2. Довжина хвилі ", на яку припадає максимум в спектрі гальмівного рентгенівського випромінювання, задовольняє умові

(8.2)

Важливою особливістю суцільного рентгенівського спектра є його коротко­хвильова межа. Із вира­зу (8.1) випливає, що при даній напрузі не може бути довжини хви­лі, яка менша за Значення сталої Планка одержане із вимірю­вань короткохвильової межі рентгенівського суцільного спектра, є одним із найточніших і достовірних.

Потік " рентге­нівських променів, що виходять із трубки, зростає пропорційно силі струму ~ в трубці, квадрату напруги на трубці і залежить від величини атомного номера Z речовини антикатода, тобто

(8.3)

Рис. 8.2.Розподіл інтенсивності по неперервному спектру

Жорсткість рентгенівських променів, яка зростає зі зменшенням довжини хвилі, характеризує їх проникаючу здатність і залежить тільки від напруги , яка подається на трубку. Чим вища напруга, тим жорсткіші рентгенівські промені, як це видно із формул (8.1) і (8.2). Інтенсивність рентгенівського випромінювання регулюється шляхом зміни струму розжарювання залежно від потрібної потужності випромінювання - від малих струмів в трубці при просвічуванні (2-5 мА) до дуже великих струмів (тисячі міліампер), що застосовуються при деяких рентгенівських знімках.

 


Дата добавления: 2015-09-03 | Просмотры: 502 | Нарушение авторских прав



1 | 2 | 3 | 4 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)