АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Краткая характеристика основных гемодинамических показателей

Прочитайте:
  1. I. Морфологическая характеристика лимфатического аппарата.
  2. I. Морфологическая характеристика проксимальных канальцев
  3. I. Общая характеристика
  4. I. Оперативно-тактическая характеристика объекта.
  5. I. Разбор основных вопросов темы.
  6. I.2. Количественная характеристика степени гипоксии тканей и клеток
  7. II. Злокачественные мезенхимальные опухоли. Общая характеристика.
  8. II. Морфологическая характеристика изъязвления
  9. II. Мотивационная характеристика темы.
  10. II. Мотивационная характеристика темы.

 

Гемодинамика представляет собой раздел физиологии, изучающий закономерности движения крови в сосудистой системе. Она является составной частью гидродинамики – раздела физики, исследующего законы движения жидкости по трубам.

Ключевыми гемодинамическими параметрами, во многом характеризующими интенсивность сердечной деятельности и функциональное состояние сосудистого русла являются следующие:

Ø минутный объем кровотока (или минутный объем сердца, подробно рассмотрен в части I) – количество крови, выбрасываемое одним из желудочков сердца за 1 минуту; этот же объем протекает через суммарное поперечное сечение любого участка большого или малого круга кровообращения за 1 минуту. Минутный объем, с одной стороны, определяется как произведение систолического объема на частоту сердечных сокращений (т.е. на количество таких систол, произведенных за минуту). С другой стороны, минутный объем кровотока можно определить, исходя из основного уравнения гидродинамики (1)

Q= , (1)

где Q – количество жидкости, протекающее через поперечное сечение трубки в единицу времени,

Р1 и Р2 – давление в начале и в конце трубки, соответственно разница между этим давлениями (т.н. градиент давления по ходу трубки) является той силой, которая способствует продвижению жидкости в трубке

R – сопротивление движению жидкости, представляет собой силу, препятствующую продвижению жидкости

Если применить данное уравнение к большому кругу кровообращения, то Р1 и Р2 – это будет соответственно давление в устье аорты и в области синусов полых вен (мест впадения полых вен в сердце), Q – минутный объем кровотока, а R – суммарное периферическое сопротивление движению крови. Поскольку давление в области синусов полых вен почти равно нулю, то основное уравнение гидродинамики для сердечно-сосудистой системы (в частности, для большого круга кровообращения) будет выглядеть следующим образом:

МО = , (2)

где АД – артериальное давление в аорте

R – суммарное периферическое сопротивление движению крови в большом круге кровообращения

МО – минутный объем кровотока в большом круге кровообращения (т.е. то количество крови, которое выбрасывается левым желудочком за 1 минуту, оно же пересекает любое суммарное поперечное сечение большого круга кровообращения за 1 минуту)

 

Рис. 15. Распределение минутного объема крови в различных отделах большого круга кровообращения

 

Ø периферическое сосудистое сопротивление – это суммарное сопротивление, создаваемое сосудистым руслом (большого или малого круга кровообращения) движению крови. Сопротивление, создаваемое каждым в отдельности сосудом (подобно сопротивлению, создаваемому какой-то трубкой) можно рассчитать по формуле Пуазейля (3):

R= , (3)

где R – сопротивление движению крови

l – длина сосуда

n - вязкость крови, протекающей по сосуду

r – радиус сосуда.

 

Из данного уравнения следует, что сопротивление движению крови будет тем больше, чем меньше внутренний диаметр сосуда и чем больше его длина и вязкость крови, протекающей по нему.

При движении крови вдоль сосуда в центре потока движутся в основном форменные элементы (осевой ток), а вдоль стенки сосуда – плазма (пристеночный ток). Следовательно, вязкость крови, составляющей осевой ток, будет гораздо выше, чем таковая пристеночного тока. Вместе с тем в большинстве сосудов (за исключением капилляров) выражены и осевой и пристеночный токи, в связи с чем суммарная вязкость крови от сосуда к сосуду не изменяется. И только в капиллярах, отличающихся самым малым диаметром (5-7 мкм) резко сокращается доля осевого тока, что обуславливает уменьшение вязкости крови, заполняющей капилляры.

Самыми узкими сосудами в сосудистом русле являются капилляры. Именно поэтому сопротивление, создаваемое каждым в отдельности капилляром, больше такового создаваемого каждым в отдельности каким-либо другим более крупным сосудом (артериолой, венулой или мелкой артерией).

Вместе с тем суммарное сопротивление, создаваемое какими-то участками сосудистого русла, зависит не только от диаметра просвета сосудов, образующих этот участок, но и от способа их соединения. Известно, что при последовательном подключении трубок суммарное сопротивление движению, создаваемое ими, определяется как сумма сопротивлений каждой в отдельности трубки:

 

Rпоследовательное= R1+R2+R3+………………+Rn+ и т.д., (4)

 

где Rпоследовательное – суммарное периферическое сопротивление, создаваемое группой последовательно соединенных трубок,

R1, R2, R3 и т.д. – соответственно сопротивления движению, создаваемые каждой в отдельности трубкой.

 

В случае параллельного соединения трубок суммарное сопротивление, создаваемое ими, определяется следующим образом:

Rпараллельное= и т.д. (5)

где Rпараллельное – суммарное периферическое сопротивление, создаваемое группой параллельно соединенных трубок,

R1, R2, R3 и т.д. – соответственно сопротивления движению, создаваемые каждой в отдельности трубкой.

 

Следовательно, суммарное сопротивление движению, создаваемое определенной группой трубок, будет выше при последовательном их соединении и меньше в случае параллельного их соединения.

Капилляры, хотя и обладают минимальным диаметром по сравнению с другими типами сосудов, и каждый в отдельности из них создает максимальное сопротивление движению жидкости, все же по причине преимущественно параллельного их подключения суммарное сопротивление, создаваемое капиллярами меньше такового, создаваемого артериолами (более крупные сосуды (d=15-70 мкм), включенные в цепь движения крови в большей степени последовательно, чем параллельно). В связи с тем, что артериолы создают в своей совокупности наибольшее сопротивление движению крови, их называют резистивными сосудами или сосудами сопротивления. Кроме того, благодаря наличию гладкомышечных волокон в составе своей стенки, артериолы, в отличие от капилляров, способны активно изменять величину своего просвета, а следовательно, и сопротивление движению крови. Наконец, в связи с тем, что от артериол отходят капиллярные сети, именно просвет артериол (а следовательно, и их пропускная способность) является определяющим фактором кровенаполнения капилляров и уровня кровоснабжения каждого конкретного участка ткани. В связи с тем, что от внутреннего просвета артериол в конечном итоге зависит интенсивность кровоснабжения органов, им отводят роль своеобразных кранов в сердечно-сосудистой системе, делающих возможным реализацию перераспределительного механизма в сосудистом русле (пререраспределения крови между органами, работающими с различной интенсивностью). Так, минутный объем кровотока постоянно перераспределяется между различными органами: артериолы интенсивно функционирующих органов расширяются, в результате чего в их капиллярное русло притекает гораздо больше крови, чем в покое, а артериолы покоящихся или работающих с низкой интенсивностью органов, наоборот, суживаются, вследствие чего уменьшается и уровень их кровоснабжения. Общая протяженность всего сосудистого русла человека составляет около 100 тысяч километров, а объем периферической крови (т.е. крови, находящейся в циркуляции) не превышает 5-10 л (8-10% от массы тела человека). В связи с этим нормально кровоснабжаются в каждый данный момент лишь жизненно важные и интенсивно работающие органы, тогда как большая часть сосудистого русла пустует.

Ø кровяное давление – это суммарный запас энергии, которым обладает движущаяся кровь в определенном участке сосудистого русла. Этот суммарный запас энергии сообщается крови в результате работы сердца. Различают артериальное, капиллярное и венозное давление. В связи с тем, что кровь при своем движении преодолевает силы сопротивления движению (прежде всего трение о стенку сосуда), кровяное давление по ходу сосудистого русла снижается. Так, максимальным оно является в сосудах, выносящих кровь из сердца (в аорте и легочном стволе), а минимальным (близким, но неравным нулю) – в сосудах, возвращающих кровь в сердце (в полых и легочных венах). Таким образом, чем дальше удалилась кровь от сердца как насоса (т.е. чем больший путь она прошла по сосудистому руслу), тем меньшим запасом суммарной энергии она обладает (т.е. тем ниже кровяное давление в данном участке сосудистого русла).

В начальной части сосудистого русла (в крупных, средних и даже некоторых мелких артериях) кровяное давление зависит от фазы сердечного цикла: в момент систолы, когда желудочками изгоняются порции крови, оно возрастает, а в момент диастолы – напротив, понижается. В мелких же артериях, артериолах, капиллярах, венулах и венах кровяное давление не зависит от фаз сердечного цикла, оно уменьшается по ходу сосудистого русла, но в каждом данном его участке является постоянным, не зависящим от фазы сердечного цикла. Превращению пульсирующего кровотока в постоянный способствуют крупные артерии (сосуды эластического типа) и отчасти средние артерии (сосуды смешанного типа – мышечно-эластического). Благодаря своей эластичности стенки этих артерий в момент систолы желудочков растягиваются, принимая определенное количество крови (при этом давление в них повышается до уровня максимального или систолического), тогда как в момент диастолы – сжимаются, проталкивая принятую из желудочка порцию крови далее (при этом давление в начальном отделе сосудистого русла понижается до уровня минимального или диастолического). Таким образом пульсирующий кровоток постепенно по ходу сосудистого русла преобразуется в постоянный, а пульсовые колебания артериального давления – гаснут. Постоянное, не зависящее от фаз сердечного цикла, давление в артериолах, капиллярах и венулах, составляющих микроциркуляторное русло (и особенно в капиллярах), является основным залогом нормального осуществления транскапиллярного обмена – того, ради чего существует система кровообращения вообще.

В связи с тем, что давление в артериальной части сосудистого русла колеблется в динамике сердечного цикла, различают следующие его разновидности:

· максимальное или систолическое давление – это давление в начальном отделе сосудистого русла в момент систолы желудочков, оно во многом характеризует насосную функцию сердца (величину систолического выброса) и растяжимость крупных и средних артерий. Различают боковое и конечное систолическое давление. Боковое давление – это давление крови, передаваемое на стенки сосудов. Конечное давление – это суммарный запас потенциальной и кинетической энергии, которым обладает движущаяся кровь на определенном участке сосудистого русла; оно на 10-20 мм.рт.ст. выше бокового. Разность между конечным и боковым систолическим давлением называется ударным давлением, которое во многом отражает интенсивность сердечной деятельности и состояние стенок сосудов. В норме величина систолического давления в плечевой артерии у здоровых молодых людей составляет 110-125 мм.рт.ст., а в легочном стволе – 25мм.рт.ст.

· минимальное или диастолическое давление – это давление в начальном отделе сосудистого русла в момент диастолы желудочков, во многом зависит от периферического сосудистого сопротивления. В норме его величина в плечевой артерии у здоровых молодых людей составляет 60-80 мм.рт.ст., а в легочном стволе – 10 мм.рт.ст.

· среднее артериальное давление – это давление, отражающее энергию движущейся крови, так как если бы она вытекала из сердца не порциями, а непрерывной струей (т.е. без пульсовых колебаний). Иными словами, среднее артериальное давление является равнодействующей артериального давления в разные фазы сердечного цикла и отражает энергию непрерывного движения крови. В связи с тем, что продолжительность понижения диастолического давления больше, чем повышения систолического, среднее артериальное давление ближе к величине диастолического давления и может быть рассчитано по следующей формуле:

АДсреднее= 0,42 АДсистолическое + 0,58 АДдиастолическое (6)

· пульсовое артериальное давление является амплитудой колебаний давления в начальном отделе сосудистого русла, обусловленных периодической насосной деятельностью сердца. Пульсовое артериальное давление определяется как разность между систолическим и диастолическим артериальным давлением и во многом характеризует насосную функцию сердца (зависит от величины систолического выброса)

АДпульсовое = АДсистолическое - АДдиастолическое (7)

 

Пульсовые колебания артериального давления в крупных сосудах (т.н. волны первого порядка, самые частые) обусловлены ритмичной периодической работой сердца. Наряду с этими пульсовыми волнами на кривой артериального давления, как правило, наблюдаются еще и дыхательные волны (или волны второго порядка) – небольшие колебания артериального давления, совпадающие с дыхательными движениями (при вдохе артериальное давление несколько понижается, а при выдохе – наоборот, повышается). Наконец, в некоторых случаях на кривой артериального давления могут появляться волны третьего порядка – самые медленные повышения и понижения артериального давления, каждое из которых охватывает несколько волн второго порядка; эти волны являются следствием периодического изменения тонуса сосудодвигательного центра, вызванного, как правило, недостаточным кровоснабжением мозга кислородом или отравлением его некоторыми ядами.

 

 

Рис. 16. Кривые изменения кровяного давления и линейной скорости кровотока в сосудистом русле большого круга кровообращения. Круговая диаграмма отражает изменение суммарного просвета сосудов по ходу сосудистого русла.

 
 
I

 

 


Рис. 17. Схема кривой артериального давления

I – волны первого порядка (пульсовые)

II – волны второго порядка (дыхательные)

III – волны третьего порядка

 

Величину артериального давления можно определить из основного уравнения гемодинамики, преобразованного для большого круга кровообращения (см. уравнение 2):

АД= , (8)

где АД – кровяное давление в начальной части сосудистого русла

МО – минутный объем крвотока

R – периферическое сосудистое сопротивление.

Из данного выражения следует, что артериальное давление зависит от

ü минутного объема кровотока, а значит, и от интенсивности сердечной деятельности – частоты и силы сердечных сокращений (поскольку МО=СОхЧСС)

ü периферического сосудистого сопротивления, во многом определяемого тонусом (определенной степенью сужения) артериол, вязкостью крови, характером ее движения и некоторыми другими обстоятельствами.

Ø линейная скорость кровотока – это скорость перемещения частиц крови и самой плазмы вдоль продольной оси сосуда. Она определяется следующим образом:

V= , (9)

где V – линейная скорость кровотока,

Q – объемная скорость кровотока (соответствующая минутному объему кровотока)

pr2 – суммарное поперечное определенного участка сосудистого русла

Из данного уравнения следует, что чем шире суммарное поперечное сечение сосудистого русла, тем ниже линейная скорость кровотока в нем. В сосудистой системе самым широким местом является капиллярная сеть: суммарное поперечное сечение всех капилляров большого круга кровообращения в 500-600 раз больше такового аорты. В связи с отмеченным наибольшее замедление движения крови происходит именно на уровне капилляров (линейная скорость кровотока в них составляет всего 0,5- 1 мм/с), тогда как максимальная линейная скорость кровотока отмечается в аорте (0,3-0,5 м/c), а в полых венах – данный показатель (в среднем около 0,2 м/с) в 2 раза ниже такового в аорте, поскольку полых вен две, и минутный объем крови, проходящий через поперечное сечение аорты, распределяется между двумя полыми венами.

 

Ø время полного кругооборота крови – это время, необходимое для того, что бы частица крови прошла большой и малый круги кровообращения. Оно составляет для человека 20-23 с и соответствует в среднем 27 систолам. Причем 1/5 этого времени приходится на продвижение крови по малому кругу кровообращения и 4/5 – на продвижение по большому.

 

Ø артериальный пульс – это ритмические колебания стенок артерий, вызванные повышением давления в них (по причине изменения объема крови) при каждой систоле желудочков. Так, в момент систолы желудочков в начальную часть артериальной системы, уже заполненную кровью, выбрасывается определенное дополнительное количество крови (соответствующее систолическому выбросу). В связи с тем, что кровь, как и любая жидкость, является несжимаемой, поступление порции крови в сосудистое русло в момент систолы желудочков сопровождается растяжением крупных артерий и повышением давления в них. После прекращения систолического выброса (т.е. с наступлением диастолы) крупные артерии, принявшие порцию крови из сердца, в силу своей эластичности сжимаются и проталкивают кровь далее. Расширение стенки и повышение давления происходить теперь в соседнем прилежащем участке артериальной части сосудистого русла. Таким образом, колебания давления, вызванные изменением кровенаполнения, волнообразно повторяясь и постепенно ослабевая, захватывают все новые и новые участки артерий, пока не достигнут артериол и капилляров, где пульсовая волна гаснет.

Рис. 18. Механизм распространения пульсовой волны

А – растяжение ближайшего к сердцу участка аорты

Б – растяжение следующего участка и заполнение его кровью

В – повторение этого процесса и распространение крови вдоль эластических артерий

 

Скорость распространения пульсовой волны не зависит от скорости движения крови, а во многом определяется эластичностью стенок крупных и средних артерий. Так, максимальная линейная скорость кровтока в крупных артериях составляет 0,3-0,5 м/с, а скорость распространения пульсовой волны в них – 5,5-8 м/с. С возрастом эластичность сосудистых стенок вследствие атеросклеротических изменений уменьшается, что обуславливает увеличение скорости распространения пульсовой волны. Частота пульса отражает частоту сердечных сокращений, а его твердость или наполнение – величину систолического выброса.

 

Различают два основных способа движения крови в сосудистом русле:

ü ламинарный (кровь движется параллельными слоями (или применительно ко всему сосуду при объемном рассмотрении – коаксиальными цилиндрами), которые являются также параллельными продольной оси сосуда), в норме такой тип движения имеет место в абсолютном большинстве сосудов. Причем внутренний или осевой ток составляют форменные элементы крови, движущиеся с наибольшей линейной скоростью, а пристеночный ток – образуют слои плазмы, движущиеся со сравнительно низкой скоростью, поскольку претерпевают наибольшее сопротивление движению в результате трения о стенку сосуда

ü турбулентный (при движении крови в сосуде возникают турбулентные завихрения, поскольку одни ее слои движутся параллельно продольной оси сосуда, а другие – перпендикулярно), в норме встречается в начальном отделе сосудистого русла, куда кровь изгоняется желудочками (в устье аорты и легочного ствола, в области дуги аорты), в местах бифуркации крупных сосудов (например, в месте деления общей сонной артерии на внутреннюю и наружную), а также в местах крутых изгибов сосудов. Вместе с тем при сильном разжижении крови (при выраженном уменьшении ее вязкости) кровоток может приобретать турбулентный характер и в других участках сосудистого русла, где он в норме должен быть ламинарным, и тогда суммарное сопротивление движению крови может возрасти, несмотря на уменьшение вязкости циркулирующей крови.

 


Дата добавления: 2015-09-03 | Просмотры: 1163 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.01 сек.)