АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

РНК – виды, строение, структуры, роль

Прочитайте:
  1. I-VII ПАРЫ ЧМН: СТРОЕНИЕ, ИССЛЕДОВАНИЕ, СИМПТОМЫ И СИНДРОМЫ ПОРАЖЕНИЯ.
  2. IX-XII ПАРЫ ЧМН: СТРОЕНИЕ, ИССЛЕДОВАНИЕ, СИМПТОМЫ И СИНДРОМЫ ПОРАЖЕНИЯ
  3. А) ХИМИЧЕСКОЕ СТРОЕНИЕ, ФИЗИКО-ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ЛЕКАРСТВЕННЫХ СРЕДСТВ
  4. Аллергия замедленного типа. Виды, причины, механизмы, роль медиаторов, проявления.
  5. Аллергия. Виды, общая этиология и патогенез. Методы десенсибилизации организма.
  6. Аллохтонная микрофлора полости рта представлена микробами, присущими другим областям. В её состав входят виды, обычно обитающие в кишечнике или носоглотке.
  7. Анатомия и топография моста. Его части, внутреннее строение, положение ядер и проводящих путей в мосту.
  8. Антигенпрезентирующие клетки: виды, роль в формировании клеточного и гуморального иммунного ответа.
  9. Брюшина, строение, функции. Ход брюшины. Этажи брюшной полости. Производные брюшины.
  10. В настоящее время получено значительное количество антагонистов фолиевой кислоты. В зависимости от их структуры, их подразделяют на конкурентные и неконкурентные ингибиторы.

РНК – это полинуклеотиды, но состоят только из одной цепи, их мол.масса меньше, чем у ДНК. Кроме этого, они отличаются следующим: 1) количество РНК в клетке зависит от возраста, физиологического состояния, органной принадлежности клетки; 2) в мононуклеотидах РНК содержатся рибоза, вместо тимина урацил; 3) для РНК не характерны правила Чаргаффа; 4) в РНК больше минорных оснований, чем в ДНК, при этом в т-РНК количество минорных оснований приближается к 50. Все РНК синтезируются на ДНК, этот процесс называется транскрипцией.

В зависимости от локализации в клетке, функции различают 3 вида РНК: м-РНК (матричная, или информационная), транспортная – т-РНК, рибосомальная –

р-РНК.

М-РНК

Открыта в 1961 году Жакобом и Мано. Она составляет всего 2-3% от общего количества РНК клетки. Эта РНК не имеет жесткой специфической структуры и ее полинуклеотидная цепь образует изогнутые петли. В нерабочем состоянии м-РНК собрана в складки, свернута в клубок, связана с белком; а во время функционирования цепь расправляется. Матричные РНК синтезируются на ДНК в ядре. Процесс называется транскрипция (списывание).

Роль м-РНК – она несет информацию об аминокислотной последовательности (т.е. о первичной структуре) синтезируемого белка. Место каждой аминокислоты в молекуле белка закодировано определенной последовательностью нуклеотидов в цепи м-РНК, т.е. в м-РНК имеются «кодовые слова» для каждой аминокислоты – триплеты, или кодоны, или генетические коды.

Т.о., м-РНК принимает непосредственное участие в биосинтезе белка. Основной постулат молекулярной биологии, показывающий направление переноса генетической информации: ДНКàРНКàБелок. Однако, в 1974 году американские ученые Темин и Балтимор показали возможность считывания информации и в обратном направлении с РНК на ДНК: ДНК↔РНКàбелок. Этот процесс идет с участием фермента ревертазы. С его помощью можно синтезировать участок ДНК по м-РНК и перенести этот синтезированный ген в другие объекты, что используется генной инженерией.

Р-РНК

на долю этого вида РНК приходится более 80% от всей массы РНК клетки. Она входит в состав рибосом. Рибосомы – это РНП, состоящие на 65% из р-РНК и на 35% из белка. Полинуклеотидная цепь р-РНК легко изгибается и укладывается вместе с белком в компактные тельца. Рибосома состоит из 2-х субъдиниц – большой и малой (соотношение их 2,5:1). В рибосоме различают 2 участка – А (аминокислотный, или участок узнавания) и Р – пептидный, здесь присоединяется п/п цепь. Эти центры расположены на контактирующих поверхностях обеих субъдиниц. Рибосомы могут свободно перемещаться в клетке, что дает возможность синтезировать белки в клетке там, где это необходимо. Рибосомы мало специфичны и могут считывать информацию с чужеродных м-РНК, вместе с м-РНК рибосомы образуют матрицу. Роль р-РНК – обуславливает количество синтезируемого белка.

Т-РНК

этот вид т-РНК изучен лучше всего, составляет 10% всей клеточной РНК. Содержится в цитоплазме, мол.масса небольшая (20тыс.Da) состоит из 70-80 нуклеотидов. Основная роль – транспорт и установка аминокислот на комплиментарном кодоне м-РНК. т-РНК специфичны к аминокислотам, что обеспечивается ферментом аминоацилсинтетазой. В неактивном состоянии она свернута в клубочек, а в активном имеет вид трилистника (клеверного листа). В молекуле т-РНК различают несколько участков: а) акцепторный стебель с последовательностью нуклеотидов АЦЦ, к нему присоединяется аминокислота. Б) участок для присоединения к рибосоме; в) антикодон – участок, комплиментарный кодону м-РНК, который кодирует аминокислоту, присоединенную к данной т-РНК. Особенностью первичной структуры т-РНК является то, что они содержат минорные, или модифицированные основания (7-метилгуанин, гипоксантин, дигидроурацил, псевдоурацил, 4-тиоурацил), которые способны к неклассическому спариванию. Это ускоряет белковый синтез. Т.о., т-РНК «метит» аминокислоту, придавая ей специфичность и способствует установлению аминокислоты на определенный участок м-РНК.

13. Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК ималые ядерные РНК.

Кэпирование

Кэпирование представляет собой присоединение к 5'-концу транскрипта 7-метилгуанозина через необычный для РНК 5',5'-трифосфатный мостик, а такжеметилирование остатков рибозы двух первых нуклеотидов. Процесс кэпирования происходит во время синтеза молекулы пре-мРНК. Кэпирование защищает 5'-конец первичного транскрипта от действия рибонуклеаз, специфически разрезающихфосфодиэфирные связи в направлении 5’→3'.[1]:221

Функции кэпа и связанных с ним белков:

участие в сплайсинге;

участие в процессинге 3'-конца мРНК;

экспорт мРНК из ядра;

защита 5'-конца транскрипта от экзонуклеаз;

участие в инициации трансляции.

Полиаденилирование

Фермент поли(А)-полимераза присоединяет 3'-концу транскрипта от 100 до 200 остатков адениловой кислоты. Полиаденилирование осуществляется при наличии сигнальной последовательности 5'- AAUAAA-3' на 3'-конце транскрипта, за которой следует 5'-CA-3'. Вторая последовательность является сайтом разрезания.[1]:225

Сплайсинг

После полиаденилирования мРНК подвергается сплайсингу, в ходе процессе которого удаляются интроны (участки, которые не кодируют белки), а экзоны (участки, кодирующие белки) сшиваются и образуют единую молекулу [2]. Сплайсинг катализируется крупным нуклеопротеидным комплексом — сплайсосомой, состоящей из белков и малых ядерных РНК. Многие пре-мРНК могут быть подвергнуты сплайсингу разными путями, при этом образуются разные зрелые мРНК, кодирующие разные последовательности аминокислот (альтернативный сплайсинг).

С – это удаление из молекулы РНК нитронов (участков РНК, к-рые практически не несут генетич. информации) и соединение оставшихся участков, несущих генетич. информацию (экзо-нов), в одну молекулу.

С.-один из этапов образования функциональноактивных молекул РНК (процессинг РНК) из их предшественников, к-рый осуществляется после завершения транскрипции (синтез РНК на ДНК-матрице). В результате удаления каждого интрона происходит разрыв двух фосфодиэфирных связей с последующим образованием одной новой.

С. подвергаются предшественники подавляющего большинства матричных РНК (пре-мРНК), а также нек-рых транспортных и рибосомных РНК (соотв. пре-т РНК и пре-рРНК). С. характерен для РНК эукариот (все организмы, за исключением бактерий и синезеленых водорослей); известны также случаи С. РНК бактериофагов.

Механизмы С. у разл. классов РНК различаются между собой. Для всех них характерна точность удаления интронов и соединения экзонов. Специфичность удаления единств. интрона, если он имеется в пре-тРНК, обеспечивается ее трехмерной структурой. Эндонуклеаза, ассоциированная с ядерной мембраной, с участием др. ферментов расщепляет предшественник на участках (сайтах) по краям интрона с образованием на концах экзонов 2',3'-циклофосфатного и 5'-гидроксильного концов (рис. 1). Соединение этих концов осуществляется в неск. стадий: у растений и дрожжей фосфорилирование 5'-конца в месте разрыва молекулы, превращение 2',3'-циклофосфата в 2'-фосфат и образование 3',5 '-фосфодиэфирной связи с участием остатка фосфорной к-ты из АТФ (левая часть рис.); у позвоночных механизм С. пре-тРНК не включает фосфорилирование экзонов в месте разрыва (правая часть рис.; на схеме указаны ферменты, катализирующие осн. этапы С.).

С. нек-рых пре-р РНК происходит автокаталитически (аутосплайсинг, самосплайсинг). В этом случае катализатор процесса - удаляемая интронная последовательность (рибо-зим). При этом С. осуществляется в результате серии после-доват. р-ций, включающих превращение одного фосфоэфира в другой без промежут. гидролиза фосфодиэфирных связей и использования энергии извне. Р-ция происходит в присут. одновалентных катионов, Mg2+ и гуанозинового кофактора (гуанозинового нуклеотида или самого гуанозина), к-рый инициирует серию превращений - высвобождение интрона, соединение двух экзонов, а также циклизацию интрона (при этом гуанозиновый кофактор регенерируется).

Самосплайсинг происходит у пре-рРНК простейших (напр., у тетрахимоны) и ряда пре-мРНК митохондрий низших грибов и нек-рых др. пре-РНК, у к-рых интроны содержат консервативные последовательности, что обусловливает образование определенных вторичной и третичной структур.

Установлено участие при удалении ряда интронов мито-хондриальных пре-мРНК у низших грибов особых белков-матюраз, к-рые кодируются частично нитронами, частично экзонами. Роль матюраз, как и нек-рых др. белков, сводится, по-видимому, к фиксации конформации интрона, необходимой для осуществления им каталитич. ф-ции.

С. пре-мРНК, находящихся в ядре, происходит в составе специфич. нуклеопротеидных частицах (сплайсомах). Обычно С. подвергается кэпированная полиаденилированная линейная пре-мРНК. К.-л. строгого порядка для удаления множественных интронов из пре-мРНК не наблюдается, хстя удаление одних интронов может происходить быстрее, чем других. С. происходит исключительно в ядре; несплай-сированная РНК остается в ядре и деградирует. Однако если пре-РНК содержит интрон, к-рый может участвовать в альтернативном пути С. (см. ниже), то она м. б. транспортирована в цитоплазму. С. ядерных пре-мРНК происходит обычно по границам интронов, к-рые содержат на концах динуклеотиды 5'-GU и AG-3' (A, G и U-соотв. остатки аденозина, гуанозина и уридина; правило Шамбо-на). Известно только неск. исключений, когда вместо GU расположен динуклеотид GC (С-остаток цитидина). Рядом с этими динуклеотидами расположены т. наз. консенсусные

Редактирование РНК — процесс, в ходе которого информация, содержащаяся в молекуле РНК изменяется путем химической модификации оснований.

 

14. Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединенияматричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич.белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5'- к 3'-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляетаминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир.полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на пов-сти, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме м. б. предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие вполирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь

Посттрансляцонные преобразования белков

Многие белки и секретируемые пептиды претерпевают различные структурные изменения в результате котрансляционных и посттрансляционных модификаций, т.е. во время или после завершения их синтеза рибосомами. Описано более 100 различных посттрансляционных модификаций белков. Роль большинства этих модификаций не выяснена; некоторые из них случайны и, по-видимому, не имеют функционального значения, но есть и такие, которые важны для жизни клетки, так как они тщательно контролируются специфическими ферментами. Модификации происходят в ЭР и аппарате Гольджи. В этих органеллах, например, ферменты гликозилирования добавляют к белкам сложные цепи остатков сахаров, образуя гликопротеины. Единственный известный случай гликозилирования в цитозоле клеток млекопитающих - это добавление к белкам N-ацетилглюкозамина. Однако множество других ковалентных модификаций протекает в первую очередь именно в цитозоле. Некоторые из них стабильны и необходимы для активности белка, например, ковалентное присоединение коферментов (биотина, липоевой кислоты или пиридоксальфосфата).

Среди известных в настоящее время модификаций описана одна, чрезвычайно важная для доставки белков к месту назначения. Присоединение жирной кислоты к белку направляет его к определенным мембранам, обращенным в цитозоль.

Важной функцией фосфоинозитидов является так называемая якорная функция - к ним прикрепляются многочисленные белки наружной поверхности клетки. Для фосфоинозитидов, служащих якорем мембранных белков, характерно высокое содержание миристиновой кислоты. В якорных фосфоинозитидах инозитольная часть липида гликолизирована. Связь белков с фосфоинозитидгликанами осуществляется через концевой этаноламин.

Определенные ковалентные модификации, происходящие в цитозоле, обратимы и служат для регуляции активности многих белков. Многие клеточные процессы регулируются путем обратимого фосфорилирования-дефосфорилирования белков.

Посттрансляционные модификации включают в себя фосфорилирование факторов транскрипции протеинкиназами, гликозилирование остатков Asn в последовательностях Asn-X- [SerThr], N-концевое ацилирование, циклизацию N-концевого остатка Glu с образованием пироглутаминовой кислоты, C-концевое амидирование последовательностей освобождающихся пептидов, гидроксилирование остатков Lys и Pro, метилирование различных остатков аминокислот.

Многие из перечисленных модификаций являются критическими для биологической активности пептидов. В частности, карбоксиамидирование C-концевого Gly активирует окситоцин ивазопрессин, а перенос сульфогруппы на остаток Tyr в холецистокинине-8 оказывается критическим для проявления его активности в поджелудочной железе. N-Ацетилирование бета-эндорфина блокирует его опиоидную активность, тогда как ацетилированиемеланоцитстимулирующего гормона усиливает его влияние на синтез меланинов. Поскольку большинство этих модификаций - тканеспецифические, пептиды, обладающие различной биологической активностью, должны быть доставлены к различным тканям в виде предшественников, где они претерпевают специфический процессинг.

15. Ген — функциональная единица наследственного материала. Взаимосвязь между геном и признаком

Долгое время ген рассматривали как минимальную часть наследственного материала (генома), обеспечивающую развитие определенного признака у организмов данного вида. Однако каким образом функционирует ген, оставалось неясным. В 1945 г. Дж. Бидлом и Э. Татумом была сформулирована гипотеза, которую можно выразить формулой «Один ген — один фермент». Согласно этой гипотезе, каждая стадия метаболического процесса, приводящая к образованию в организме (клетке) какого-то продукта, катализируется белком-ферментом, за синтез которого отвечает один ген.

Позднее было показано, что многие белки имеют четвертичную структуру, в образовании которой принимают участие разные пептидные цепи. Например, гемоглобин взрослого человека включает четыре глобиновых цепи — 2α и 2β, кодируемые разными генами. Поэтому формула, отражающая связь между геном и признаком, была несколько преобразована: «Один ген — один полипептид».

«Короткий» ген box образуется в результате удаления из «длинного» гена первых трех интронных участков и сплайсинга первых четырех экзонов; И — интрон, Э — экзон; п.н. — пары нуклеотидов

Изучение химической организации наследственного материала и процесса реализации генетической информации привело к формированию представления о гене как о фрагменте молекулы ДНК, транскрибирующемся в виде молекулы РНК, которая кодирует аминокислотную последовательность пептида или имеет самостоятельное значение (тРНК и рРНК).

Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах. «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п.н. и 5 интронов. Короткая форма гена состоит из 3300 п.н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка — РНК-матуразы. Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга — удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей,.определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген — один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид — один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.

 

16. Ген мутирует как единое целое и представляет собой единицу наследственной изменчивости — мутации.

Генные мутации связаны с изменением внутренней структуры генов, что превращает одни аллели в другие. Можно выделить несколько типов генных мутаций на молекулярном уровне:

- замена пар нуклеотидов

- делеция

- вставка нуклеотида

- перестановка (инверсия) участка гена.

Замена пар нуклеотидов. Замена пуринового основания на другое пуриновое, или одного пиримидинового на другое пиримидиновое – транзиция. Замена пуринового основания на пиримидиновое и наоборот – трансверсия. При замене нуклеотидов в структурных генах происходит изменение смысла гена – возникают миссенс-мутации. При этом одна аминокислота в полипептиде замещается другой. Фенотипическое проявление мутации зависит от положения аминокислоты в полипептиде. При замене последовательности ЦТЦ на ЦАЦ возникает серповидно-клеточная анемия. Образуется новый полипептид и гемоглобин имеет совсем другие свойства. Некоторые миссенс-мутации приводят к возникновению фермента, обладающего высокой активностью в одних условиях и средней в других условиях. Т.к. генетический код вырожден, то при замене триплетов, кодирующий одну и ту же аминокислоту, мутации не проявляются. Другой вид мутаций – нонсенс - мутации. При этих мутациях при замене одного нуклеотида другим образуются бессмысленные триплеты. Синтез полипептида прекращается и белок имеет совсем иные свойства.


Дата добавления: 2015-10-20 | Просмотры: 997 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.008 сек.)