АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Звуковосприятие
При колебании основной мембраны происходит также и перемещение слуховых клеток кортиева органа, сопровождающееся возникновением в них процесса возбуждения, или нервного импульса. Этот момент и является началом слухового восприятия. До этого момента в наружном, среднем и отчасти внутреннем ухе происходит лишь передача физических колебаний, возникших в окружающей среде. При раздражении волосковых клеток кортиева органа происходит превращение физической энергии звуковых колебаний в физиологический процесс нервного возбуждения. В этом превращении и состоит функция кортиева органа как периферического отдела слухового анализатора.
Слуховой орган человека воспринимает звуки различной высоты, т. е. различной частоты колебаний. Область слухового восприятия ограничена звуками, частота которых расположена между 16 колебаниями в секунду — нижней границей и 2000 колебаний в секунду — верхней границей.
Звуки с частотой ниже 16 колебаний в секунду относятся к инфразвукам, выше 20 000 — к ультразвукам. Некоторые животные обладают способностью воспринимать значительно более высокие звуки. Так, например, собаки различают звуки выше 30 000 Гц, кошки — до 40 000 Гц, а летучие мыши издают и воспринимают звуки высотой до 50 000—60 000 Гц. В последнее время получены данные, свидетельствующие о возможности восприятия человеком ультразвуковых колебаний с частотой до 250 000 Гц и выше посредством костной проводимости.
В пределах области слухового восприятия наше ухо способно различать звуки по высоте, силе и тембру. Для объяснения этой способности было высказано несколько теорий. Наиболее распространенной является резонансная теория, предложенная в середине прошлого столетия Г. А. Гельмгольцем. Согласно его теории, различение звуков по высоте осуществляется посредством следующего механизма. Волокна основной мембраны благодаря различной длине и неодинаковому натяжению имеют, подобно струнам музыкальных инструментов, свои собственные тоны, и каждое волокно (или группа волокон) приходит в содружественное колебание, или резонирует, только на соответствующий тон. Согласно резонансной теории слуха, на высокие звуки отвечают короткие волокна основной мембраны в основном завитке улитки, а на низкие звуки — длинные волокна в верхнем завитке. Звуки средней высоты приводят в содружественное колебание волокна основной мембраны среднего завитка.
По этой же теории разные по силе звуки вызывают различной силы размахи волокон основной мембраны, а различение тембра основано на способности периферического конца звукового анализатора разлагать сложные звуки на простые тоны.
Для пояснения резонансной теории обычно приводится следующий опыт. Если поднять крышку рояля и произнести на какой-нибудь высоте звук о, то в рояле довольно отчетливо повторится этот звук. Гласный о состоит, как указывалось, из основного тона и целого ряда обертонов. Оказывается, что в содружественное колебание приходят именно те струны, которые по своей высоте соответствуют высоте основного тона и обертонов гласного о. Согласно резонансной теории, нечто аналогичное должно происходить и в улитке.
Необходимо отметить, что ряд фактов из области физиологии слуха не укладывается в механизм звукопередачи и звуковосприя-тия, как он трактуется с точки зрения резонансной теории. Наибольшие трудности возникают перед этой теорией при объяснении различения всей совокупности звуков по высоте и по силе, если учесть то обстоятельство, что волокна основной мембраны связаны друг с другом и не способны к изолированным колебаниям.
Для устранения этих затруднений в резонансную теорию в дальнейшем были внесены некоторые дополнения и уточнения. В настоящее время наибольшим признанием пользуется теория, которая предполагает, что при действии звука колеблются не только резонирующие на данную частоту волокна, но и другие волокна основной мембраны. При этом максимум резонанса перемещается на основной мембране соответственно частоте колебаний воздействующего звука, а ощущение высоты звука определяется местом максимальной амплитуды колебаний основной мембраны. При высоких звуках максимальная деформация основной мембраны, а следовательно, и максимальное раздражение рецепторных клеток кортиева органа происходит в области основного завитка улитки, а при низких — в области ее верхушки. Что касается различения звуков по силе, то оно, согласно современным взглядам, объясняется вовлечением в нервный процесс различного числа клеток кортиева органа; чем звук сильнее, тем большее число клеток посылает в мозг нервные импульсы.
Наличие пространственного распределения восприятия звуков в улитке было убедительно доказано опытами на собаках, проведенными Л.А. Андреевым в лаборатории И.П. Павлова, по методу условных рефлексов. Эти опыты показали, что при нанесении повреждения в определенном отделе основной мембраны и кортиева органа исчезает выработанная на определенный тон условно-рефлекторная реакция, а именно повреждение в основном завитке улитки сопровождается потерей восприятия высоких тонов, и наоборот, при повреждении в верхнем завитке исчезает реакция на низкие тоны.
Такие же результаты были получены при изучении влияния продолжительного воздействия сильных звуков разной частоты на внутреннее ухо животных. При микроскопическом исследовании оказывалось, что высокие тоны разрушали кортиев орган главным образом в области основного завитка, а низкие — преимущественно в области верхушки улитки.
Локализация восприятия звуков разной высоты в различных частях улитки подтверждается также и микроскопическим исследованием внутреннего уха людей, имеющих частичное выпадение восприятия тех или иных тонов: исследование обнаруживает в таких случаях повреждение соответствующих частей кортиева органа.
Новейшие экспериментальные исследования установили, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Таким образом, улитка как бы выполняет роль микрофона, преобразующего механические колебания в электрические. Такого рода эксперимент заключается в том, что у животного хирургическим путем обнажают область круглого окна улитки и приставляют к этому месту один электрод (другой электрод укрепляется на шее), после чего подвергают ухо животного воздействию каких-либо звуков. Если отвести от улитки возникающие в ней при воздействии звуков электрические токи и провести их через мощный усилитель, то при помощи телефона или громкоговорителя можно вновь преобразовать эти электрические колебания в звуковые. При этом телефон и громкоговоритель с большой четкостью воспроизводят звуки, в частности речь, воздействию которых подвергалось ухо экспериментального животного. Это явление получило название микрофонного эффекта улитки. Удалось получить аналогичный феномен и у человека при наличии большого прободения барабанной перепонки.
Электрофизиологические исследования дают основания предполагать, что различные волокна слухового нерва проводят возбуждения, соответствующие различным по высоте звукам, т. е. пространственное распределение проведения звуков различной высоты существует, по-видимому, и в самом нерве.
Некоторые исследователи полагают, что волокна, по которым проводятся возбуждения, соответствующие низким звукам, расположены по периферии нервного ствола, а волокна, проводящие высокие звуки, расположены более центрально. Импульсы, возникающие при воздействии звуковых раздражений, поступают по проводящим нервным путям в подкорковые и корковые слуховые центры. Раздражение подкорковых слуховых центров вызывает рефлекторные реакции, протекающие по типу безусловного рефлекса. К числу таких рефлекторных реакций, возникающих при воздействии звуков, относятся, например, расширение зрачков, смыкание век, поворот головы.
В коре височных долей больших полушарий головного мозга осуществляется высший анализ и синтез звуковых раздражений. Как показали экспериментальные исследования И.П. Павлова и его учеников, реакция на звук и элементарная дифференциация звуков сохраняются у собак и после удаления височных долей мозга. Эти опыты доказали, что рассеянные элементы слухового анализатора имеются и за пределами височных долей, но эти элементы обеспечивают лишь простейший анализ и синтез звуковых раздражений.
Таким образом, слуховой аппарат нужно рассматривать как целостно действующий, единый в функциональном отношении звуковой анализатор, различные части которого выполняют различную работу. Периферический конец производит первичный анализ и преобразует физическую энергию звука в специфическую энергию нервного возбуждения; проводящие нервные пути передают возбуждение в мозговые центры, и, наконец, в коре головного мозга производится превращение энергии нервного возбуждения в ощущение. Кора головного мозга играет ведущую роль в работе звукового анализатора.
Выключение слуховой области коры одного полушария ведет к двустороннему понижению слуха, но главным образом на противоположное ухо. Выключение слуховых областей обоих полушарий ведет к полному нарушению коркового анализа и синтеза звуковых раздражений, причем элементарная реакция на звук (ориентировочный рефлекс, глазодвигательные рефлексы) может сохраниться.
Специфической особенностью слуха человека является способность воспринимать звуки речи не только как физические явления, но и как смыслоразличительные единицы — фонемы. Эта способность обеспечивается наличием у человека сенсорного (чувствительного) центра речи, расположенного в заднем отделе верхней височной извилины левого полушария головного мозга. При вы ключении этого центра нарушается анализ и синтез сложных звуковых комплексов, составляющих словесную речь. Восприятие тонов и шумов, входящих в состав речи, может в этих случаях сохраниться, но различение этих тонов и шумов именно как речевых звуков становится невозможным, в результате чего нарушается понимание речи — возникает сенсорная афазия («словесная глухота»), У левшей сенсорный центр речи находится в правом полушарии.
Дата добавления: 2015-11-02 | Просмотры: 609 | Нарушение авторских прав
|