АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Фізико – хімічні властивості крові

Прочитайте:
  1. A. Загальний аналіз сечі, сечовина, креатинін, калій сироватки крові, УЗД нирок.
  2. E. Переливання крові
  3. III. Хімічні методи.
  4. А. Визначити рівень тіреоїдних гормонів у плазмі крові, сканування щитовидної залози.
  5. А. Загальний аналіз крові, біохімічнии аналіз крові, посів крові на стерильність, формолову пробу.
  6. Алгоритм забору крові на дослідження методом ІФА
  7. Антигени та антитіла груп крові системи АВО
  8. Білки плазми крові, їх функціональне значення ШОЕ.
  9. Білковий склад плазми крові.
  10. Біофізичного профілю, доплерометрії, визначення вмісту в сироватці крові гормонів фетоплацентарного

Плазма являє собою колоїдно-полімерний розчин, розчинником у якому є вода, розчинними речовинами – солі і низькомолекулярні органічні сполуки, колоїдним компонентом – білки і їхні комплекси. До складу плазми входить 92 % води, 6 – 7 % органічних та 1,3 – 1,8 % неорганічних речовин.

Щільність крові коливається у вузьких межах і залежить в основному від вмісту в ній формених елементів, білків і ліпідів. Щільність крові становить у риб 1,032 – 1,051 г/мл. Щільність плазми крові риб варіює в межах від 1,022 до 1,029 г/мл.

Плазма крові є розчином, що включає колоїдні і кристалоїдні речовини. Показниками, що характеризують стан колоїдних речовин, є в'язкість і поверхневий натяг, стан кристалоїдних речовин – осмотичний тиск і електропровідність. Велика в'язкість крові у порівнянні із водою залежить від гідрофільних колоїдів, що містяться в ній. Солі, що входять до складу рідкої частини крові, ледь помітно впливають на її в'язкість. Значно можуть підвищувати в'язкість формені елементи, які містяться в крові. В'язкість плазми крові хрящових і костистих риб у середньому дорівнює 1,49 – 1,83 і має приблизно такі значення, як і в'язкість плазми ссавців, але для цільної крови отримані значення дещо нижчі – 1,7 – 1,8 проти 4 – 5 у ссавців. Поверхневий натяг сироватки, що вимірювався різними засобами у різних видів риб, також виявляється близьким до сироватки ссавців.

Осмотичний тиск в розчині забезпечується тими речовинами, які розчинені в ньому. Це електроліти, неелектроліти (сечовина, глюкоза тощо) та колоїди. Цей показник має дуже велике значення як для водного обміну між клітинами та внутрішнім середовищем організму, так і для водного обміну між організмом і навколишнім середовищем, тому і повинен підтримуватися на відносно постійному рівні. Хрящові та костисті риби мають певні відмінності в регуляції цього показника.

Пластинозяброві риби і латимерія, проблеми осморегуляції вирішують за рахунок високого вмісту сечовини і триметиламіну в крові (більш 100 ммоль/л) і м'язах (більш 200 ммоль/л).

Костисті риби підтримують свої осмотичні концентрації на рівні приблизно в три або чотири рази нижче, ніж у морській воді. У цілому показники осмотичної концентрації для морських і прісноводних риб близькі, хоча у морських є тенденція до дещо більш високих концентрацій. Під час зниження температури середовища у прісноводних риб дещо зменшується концентрація іонів у сироватці крові; у морських риб, навпаки, за тих же умов концентрація іонів зростає. Деякі риби переносять зміну солоності в широкому діапазоні і мігрують із морської води в солонувату і прісну та назад.

У евригалінних риб під час переходу із прісної води у морську спостерігаються деякі зміни в іонному складі. Ці міграції часто пов'язані із життєвим циклом. Наприклад, осетрові розмножуються в прісній воді, їхня молодь мігрує до моря і, досягнувши зрілості, повертається у прісну воду для нересту. У звичайного вугра ми знаходимо протилежну картину: личинки виводяться в морі, потім переміщуються із морськими течіями і досягають прибережних зон, відкіля заходять у прісні води. А перед настанням зрілості вугор повертається в море для розмноження. Перехід із одного середовища в друге потребує глибоких змін в осморегуляторних процесах.

Осмотичну активність в біологічних середовищах вимірюють, виходячи із зниження точки замерзання рідини. Зниження точки замерзання (депресія) на 1 °С відповідає осмотичному тиску у 12 атм. У костистих морських риб D крові в середньому дорівнює 0,761. Проте у окремих видів морських риб цей показник може помітно відхилятися від зазначеної величини. Так, риби, які мешкають в умовах низьких температур мають підвищений вміст мінеральних речовин у крові. Одним із найбільш надзвичайних прикладів пристосування до низьких температур є висока депресія у нототеневих риб (D = 2,2), що пояснюється наявністю в їх крові глюкопротеїдів із молекулярною масою від 2600 до 33700.

У прісноводних костистих середня величина депресії дорівнює 0,521 або, за деякими даними, ще нижче – 0,425.

У осетрових депресія в середньому дорівнює 0,640. При переході із моря у прісну воду в період нересту, осмотичний тиск крові у хрящових ганоїдів значно знижується, доходячи в середньому до (D = 0,486). Падіння осмотичного тиску при переході осетрових із моря до річки пов'язано, головним чином, із зниженням вмісту в крові хлоридів.

У риб різних видів рН крові коливається у середньому від 7,52 до 7,71. Менша рН крові риб у порівнянні із кров'ю ссавців, обумовлена меншою буферною ємкістю, зокрема, за рахунок малого лужного резерву. Лужний резерв у коропа 25,0 (48,03 – 74,95 об.% СО2). Буферна ємкість у морських риб ще менша, ніж у прісноводних. Крім того, буферна ємкість у морських і прісноводних риб досить мінлива. Навіть у одного виду риб резервна лужність крові різко змінюється при переміщенні риби із прісної води в солону і навпаки. При цьому змінюється відповідно також кількість білків, фосфатів крові і вуглекислих солей. Подібні факти були відзначені у відношенні коропа, посадженого в солонувату воду, а також у вугрів і мурен. Різна буферна ємкість у морських і прісноводних риб, ймовірно, пояснюється тим, що добре забуферена морська вода має постійну рН, у той час як концентрація водневих іонів у прісних водах піддається великим коливанням.

Активне пристосування до змін солоності зовнішнього середовища відбувається у риб за допомогою нервової системи. Тому риба, позбавлена хоча б частково, нормальної рефлекторної регуляції внутрішнього середовища, стає безпомічною стосовно змін осмотичного тиску середовища, у якому вона знаходиться. Так, наприклад, у дослідах Дрильєна, коропи, позбавлені оперативним шляхом частини спинного мозку, миттєво гинули в сольовому розчині із точкою замерзання – 0,2° С, тоді як інтактні коропи жили в сольовому розчині при D = – 0,9°.

 


Дата добавления: 2015-11-02 | Просмотры: 745 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)