АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Глава 3. ОСНОВЫ ЭВОЛЮЦИОННОЙ НЕВРОЛОГИИ 2 страница

Прочитайте:
  1. DRAGON AGE: THE CALLING 1 страница
  2. DRAGON AGE: THE CALLING 10 страница
  3. DRAGON AGE: THE CALLING 11 страница
  4. DRAGON AGE: THE CALLING 12 страница
  5. DRAGON AGE: THE CALLING 13 страница
  6. DRAGON AGE: THE CALLING 14 страница
  7. DRAGON AGE: THE CALLING 15 страница
  8. DRAGON AGE: THE CALLING 16 страница
  9. DRAGON AGE: THE CALLING 17 страница
  10. DRAGON AGE: THE CALLING 18 страница

показывают, что мозг новорожденного — не просто безликая масса клеток, ожидающих внешних воздействий, а генетически запрограммированная система, постепенно реализующая заложенную в нее тенденцию развития. Только что родившийся ребенок — далеко не "нуль", а сложнейший результат насыщенного перестройками периода внутриутробного развития.

Если продолжить сравнение мозга новорожденного с "чистой доской", незаполненной тетрадью, то можно отметить, что несмотря на внешнее сходство всех тетрадей каждый экземпляр имеет свои особенности. В одном, например, нельзя писать чернилами (они расплываются), в другом обнаруживаются неразрезанные страницы (поневоле приходится оставлять пустые места), в третьем перепутана нумерация страниц и необходимо делать записи не по порядку, а в разных местах. Более того, практически невозможно записать во все экземпляры один и тот же текст, одни и те же сведения, не говоря уже о различиях формы, стиля изложения и почерка. В одних случаях изложение получается предельно сухим, в других — романтически приподнятым, в третьих целые фрагменты оказываются совершенно неразборчивыми. Однако следует отметить, что сравнение мозга с тетрадью чересчур поверхностно, ибо мозг человека — это не компьютер для фиксации сведений, а система, активно перерабатывающая информацию и способная самостоятельно извлекать новую информацию на основе творческого мышления. Главной причиной творческого, интеллектуального развития ребенка является необходимость взаимодействия отдельных форм поведения в ходе решения возникающих и усложняющихся в окружении ребенка жизненных задач.

На основе изучения развивающегося мозга можно условно говорить о "биологическом каркасе личности", который влияет на темп и последовательность становления отдельных личностных качеств. Понятие "биологический каркас" динамическое. Это, с одной стороны, генетическая программа, постепенно реализующаяся в процессе взаимодействия со средой, с другой — промежуточный результат такого взаимодействия. Динамичность "биологического каркаса" особенно наглядна в детстве. По мере повзросления биологические параметры все более стабилизируются, что дает возможность разрабатывать типологию темпераментов и других личностных характеристик.

Важнейшими факторами "биологического каркаса личности" являются особенности мозговой деятельности. Эти особенности генетически детерминированы, однако эта генетическая программа всего лишь тенденция, возможность, которая реализуется с различной степенью полноты и всегда с какими-то модификациями. При этом играют большую роль условия внутриутробного развития и различные факторы внешней среды, воздействующие после рождения. Все же влияния внешних факторов небеспредельны.

Генетическая программа определяет предел колебаний в своей реализации, и этот предел принято обозначать как норму реакции.

Например, такие функциональные системы, как зрительная, слуховая, двигательная, могут существенно различаться в нормах реакции. У одного человека от рождения присутствуют задатки абсолютного музыкального слуха, другого нужно обучать различению звуков, но выработать абсолютный слух так и не удается. То же самое можно сказать о двигательной неловкости или, наоборот, одаренности. Таким образом, "биологический каркас" в известной степени предопределяет контуры того будущего ансамбля, который называется личностью.

Говоря о вариантах нормы реакции отдельных функциональных систем, следует указать на относительную независимость их друг от друга. Например, между музыкальным слухом и моторной ловкостью нет однозначной связи. Можно прекрасно, тонко понимать музыку, но плохо выражать ее в движениях. Этот факт раскрывает одну из важнейших закономерностей эволюционирования мозга — дискретность формирования отдельных функциональных систем.

ПРИНЦИП ГЕТЕРОХРОННОСТИ В ВОЗРАСТНОЙ ЭВОЛЮЦИИ МОЗГА

Внешние проявления нервно-психического развития напоминают мчащуюся по шоссе группу соревнующихся велосипедистов: вначале они сбиваются в единую плотную массу, затем постепенно растягиваются цепочкой, причем лидер часто сменяется, его обгоняют другие. На каждом возрастном этапе какие-то функции или отдельные их звенья выглядят наиболее активными и сформированными. Наступает следующий возрастной период, и картина меняется: недавние "лидеры" отходят на вторые места, появляются новые формы и способы реагирования.

Например, новорожденный ребенок обладает набором первичных автоматизмов, обеспечивающих прежде всего акт сосания и регуляцию мышечного тонуса. Зрительное, слуховое восприятия находятся еще в рудиментарном состоянии. Но постепенно зрительные реакции становятся все более активными: от автоматической фиксации взгляда на случайно попавшем в поле зрения предмете ребенок переходит к самостоятельному зрительному поиску; он приобретает способность разглядывать предмет, "ощупывать" его взглядом. К 6—7-му месяцу жизни разглядывание становится важнейшим способом изучения окружающего мира. Однако вскоре, как только появляется возможность брать предметы, перекладывать их из одной руки в другую (9 — 10 мес), активное манипулирование приобретает главную роль в деятельности

ребенка. С появлением речи мануальное (ручное) познание все более вытесняется словесным.

Если какой-то возрастной этап представить как финишную черту, то можно увидеть, что к данному финишу различные функциональные системы приходят с разной степенью зрелости, совершенства. Одни уже почти оформились и в дальнейшем лишь незначительно модифицируются, другие только начинают формироваться. В этом заключается принцип гетерохронности, неодновременности созревания отдельных функциональных систем мозга. Зрительное восприятие, например, совершенствуется быстрее, чем слуховое или вкусовое, а способность понимать обращенную речь возникает гораздо раньше, чем умение говорить.

Гетерохронность развития отдельных звеньев функциональной системы можно зарегистрировать при помощи анатомо-физиологических исследований. Тем самым объективно раскрывается материальный субстрат процессов развития мозга. В частности, большое внимание уделяется темпам миелинизации периферических нервов — скорости образования миелиновой оболочки в нервных проводниках. Миелиновая оболочка является эволюционным приобретением, позволяющим проводить нервные импульсы с большей скоростью и более дифференцированно. Миелинизированные нервные волокна обнаруживаются только у представителей относительно поздних этапов эволюции и в наибольшей степени — у млекопитающих, включая человека. Сопоставление степени миелинизации у взрослых и детей различных возрастов показывает, сколь неравномерно происходит этот процесс в различных отделах нервной системы. Так, волокна лицевого нерва, участвующие в обеспечении акта сосания, оказываются миелинизированными уже к моменту рождения, а так называемый пирамидный путь, связывающий двигательные центры коры головного мозга с соответствующими отделами спинного мозга, завершает миелинизацию лишь к 2 годам. Процессы миелинизации косвенно отражаются на скоростях проведения импульсов по волокнам нерва. Эти скорости определяются при помощи электронейромиографии.

Установлено, что общая тенденция, характерная для созревания нервной системы, заключается в увеличении скоростей проведения нервных импульсов. Темпы прироста скоростей в разных отделах нервной системы неодинаковы в различные возрастные периоды. Так, у новорожденных наиболее высоки скорости проведения в тех волокнах лицевого нерва, которые связаны с актом сосания. Эти показатели даже мало отличаются от величин, характерных для взрослого человека. Скорости проведения в нервах верхних и нижних конечностей новорожденного значительно ниже.

В дальнейшем отмечается быстрое нарастание скоростей проведения импульсов в верхних конечностях, что предшествует появлению у ребенка манипулятивной деятельности. К 8 —10

месяцам, когда обычно наблюдаются попытки самостоятельно вставать на ноги, резко повышаются скорости проведения импульсов в нижних конечностях. Этот прирост опережает соответствующие показатели для верхних конечностей вплоть до того периода, пока ребенок не овладеет самостоятельной ходьбой. В дальнейшем скорости проведения импульсов в верхних конечностях снова начинают расти быстрее и раньше достигают характерных для взрослых норм.

Из всех этих данных следует, что гетерохрония нарастания скоростей проведения импульсов отчетливо связана с усложнением двигательных функций. Схема лицо — руки — ноги — руки соответствует основным этапам моторного развития ребенка. Более того, нарастание скоростей проведения предшествует формированию новой функции. В этом проявляется принцип опережающего обеспечения функции, характерный для развивающейся нервной системы. Наличие опережающего обеспечения — еще одно доказательство существования биологической программы развития мозга.

СИСТЕМНО-ФУНКЦИОНАЛЬНАЯ ДИСКРЕТНОСТЬ МОЗГА

Несмотря на то что каждая функциональная система и даже ее звенья имеют собственные программы развития, мозг во все периоды жизни работает как единое целое. Эта интегративность предполагает теснейшее взаимодействие различных систем, их взаимную обусловленность. Отсюда вытекает одна из важнейших проблем в изучении развивающегося мозга — исследование механизмов установления межсистемных связей. Мозг остается единым в своей деятельности, но на каждом этапе это уже другой мозг, другой уровень межсистемных взаимодействий. Поэтому даже детальное знание хронологии развития отдельных функциональных систем не прзволяет оценить общий уровень развития на каждом конкретном этапе жизненного пути. Представления о системно-функциональной дискретности мозга должны быть усовершенствованы при изучении межсистемной ансамблевой деятельности. Вспомним сравнение картины нервно-психического развития с группой велосипедистов с той лишь разницей, что в данной группе присутствуют несколько соревнующихся команд, и нас интересует тактика членов одной команды. Для достижения общекомандной победы не очень разумно, если один из спортсменов будет постоянно лидировать — у него не хватит сил. Рациональнее выдвигать из команды лидеров поочередно.

При изучении развивающегося мозга, особенно в первый год жизни, обнаруживается нечто сходное. Появление новых форм реагирования сопровождается угасанием, редукцией первичных автоматизмов новорожденного. При этом оба процесса —

обновление и редукция — должны быть тонко сбалансированы. Преждевременное угасание первичных автоматизмов лишает новые функции прочного фундамента, ибо в развитии мозга обязателен принцип преемственности. Слишком поздняя редукция "устаревших" форм реагирования мешает образованию новых, более сложных реакций: нервная система словно "застревает" на каком-то уровне развития. Необходима специальная помощь, чтобы "сдвинуть" ее с мертвой точки (рис. 3).


Рис. 3. Становление двигательной функции в онтогенезе: В норме (1) на фоне угасания примитивной функции развивается более совершенная. Задержка угасания приводит к запаздыванию созревания более высокого уровня организации (2) либо, длительно сохраняясь, примитивная функция нарастает и препятствует развитию более совершенной (4), либо, наконец, на фоне нормального темпа развития конечной функции можно отметить признаки задержки угасания примитивной (5)

Важная роль сбалансированности процессов редукции и обновления наиболее наглядно выступает в двигательном развитии детей первого года жизни. У новорожденного имеются первичные позотонические автоматизмы, влияющие на мышечный тонус в зависимости от положения головы в пространстве. К концу 2-го — на 3-м месяце жизни эти автоматизмы должны угасать, уступая новым формам регуляции мышечного тонуса, связанным, в частности, со способностью ребенка удерживать голову. Если этого

угасания не происходит, данные позотонические автоматизмы следует рассматривать как аномальные, ибо они препятствуют удерживанию головы. Далее формируется целая цепочка патологических явлений: невозможность удерживать голову нарушает развитие зрительного восприятия и вестибулярного аппарата; из-за того что не происходит развития вестибулярного аппарата, не вырабатывается способность к распределению тонуса мышц, обеспечивающему акт сидения. В итоге искажается вся схема двигательного развития, может пострадать также и умственное развитие.

Следует отметить, что понятие сбалансированности процессов редукции и обновления не сводится только к тому, чтобы одни функции вовремя уступали место другим. Ведь редукция не означает полного исчезновения автоматизмов, а подразумевает их включение в более сложные функциональные ансамбли. Поэтому если опережающее обеспечение нового функционального ансамбля достаточно основательно, то первичный автоматизм, хотя и не редуцируется полностью, все же не нарушает общей схемы развития. Иная картина наблюдается в том случае, когда запаздывание редукции сочетается с замедленным формированием субстрата новых реакций; тогда возникают реальные возможности для ненормальной гипертрофии "архаических" автоматизмов, для "застревания" на каких-то отживших способах реагирования, регулирования функций.

Таким образом, наряду с гетерохронностью развития отдельных функциональных систем и их звеньев необходима и определенная синхронность в их взаимодействиях: на каждом возрастном этапе отдельные системы должны находиться в определенной степени зрелости. Пусть эти степени различны, но различия должны быть на данный момент достаточно согласованны, иначе не произойдет полноценного слияния систем в единый ансамбль.

РАНИМОСТЬ МОЗГА РЕБЕНКА В КРИТИЧЕСКИЕ ПЕРИОДЫ РАЗВИТИЯ

Моменты, во время которых происходит оформление функциональных ансамблей, нередко называют критическими периодами развития. Для эволюционной неврологии очень важны выявление и изучение таких периодов, ибо на данном отрезке времени еще не сформированная функция наиболее ранима, но как раз в это время имеются и наибольшие шансы предотвратить угрозу дефекта.

Наглядной моделью для изучения критических периодов развития является процесс формирования речи. Известно, что способность к усвоению речи ограничена во времени. Процессы опережающего обеспечения речевой функции, разворачивающиеся еще на первом году жизни, в дальнейшем постепенно угасают

при отсутствии подкрепления. Например, в случае не распознанной вовремя врожденной тугоухости интенсивность предречевых действий (гуление, лепет) снижается уже к концу первого года жизни. В дальнейшем такой ребенок может переключаться на язык жестов и очень трудно усваивает разговорные навыки. Если речевая функция не оформилась к 4 —5 годам, дальнейшее речевое развитие ставится под большую угрозу.

Нет сомнения, что и в процессе формирования других функциональных ансамблей существуют аналогичные критические периоды максимальной готовности, открытости для установления межсистемных связей. Детальное изучение этих периодов входит в число актуальнейших задач эволюционной неврологии.

Анализ критических периодов позволяет лучше понять сущность многих отклонений, с которыми встречается клиническая практика. Эволюционно-динамический подход к разнообразным поражениям нервной системы показывает, что часто такие поражения представляют собой не поломку уже готового механизма, а задержку или искажение развития, словно из первичной заготовки вытачивается лишь первое приближение к желаемому образцу. При этом под образцом не следует понимать некий идеал нормы, под который необходимо подгонять все варианты развития. Человечество как раз и сильно именно разнообразием индивидуальностей, стандартизация здесь недопустима. Скорее под желаемым образцом можно понимать такой индивидуальный вариант, который удовлетворяет хотя бы минимуму требований, основанных на среднестатистических показателях. Однако и в таком случае важно не только оценить уровень развития, но и определить дальнейший прогноз. В отсутствии прогноза, кстати, заключается методологическая несостоятельность многих тестов, оценивающих интеллектуальное развитие. Большинство таких тестов подобно фотографиям, фиксирующим множество различных деталей, но только на данный момент. Между тем прогноз динамики развития не менее важен, чем состояние на момент обследования.

Наблюдения показывают, что наряду со среднестатистической планомерно восходящей кривой нормального развития существуют варианты временного отставания с последующим резким "рывком" вверх и, наоборот, первоначальное заметное превышение средних нормативов сменяется почти полной остановкой или явной тенденцией к замедлению темпов. Многофакторный анализ "профилей развития" и их возможной динамики относится к числу актуальных задач неврологии, особенно при обследовании детей школьного возраста.

Школа является учреждением, предъявляющим стандартные требования к явно нестандартной массе учеников. Наибольшее внимание привлекают неуспевающие школьники. Специальные неврологические исследования показывают, что среди

неуспевающих школьников весьма часто встречаются дети с так называемой минимальной мозговой дисфункцией, суть которой заключается в недоразвитии отдельных функциональных систем мозга или в недостаточной организованности межсистемных связей. Например, недоразвитие центров письменной речи обусловливает трудности при обучении правописанию слов. Встречаются также изолированные дефекты чтения, счета, моторная неловкость, не позволяющая аккуратно писать, хорошо рисовать. К сожалению, нередко подобные ученики огульно зачисляются в разряд неспособных, и иногда даже ставится вопрос о переводе их во вспомогательную школу. На самом же деле здесь имеются вполне конкретные неврологические расстройства, поддающиеся коррекции.

МОЗГ - РАЗВИВАЮЩАЯСЯ СИСТЕМА

Эволюция человека как биологического вида завершилась. Однако в течение каждой индивидуальной жизни мозг продолжает оставаться развивающейся, эволюционирующей системой. Результаты этой эволюции определяются многоуровневым взаимодействием биологической программы развития и средовых факторов. Если эволюция живой природы протекала стихийно, то ответственность за индивидуальное эволюционирование каждого мозга ложится на человечество. Изучение системных закономерностей развивающегося мозга — наиболее насущная задача современной науки.

В связи с этим следует отметить, что представление об эволюционировании мозга не ограничивается рамками индивидуального развития. Каждый индивид — носитель общественного сознания, поэтому каждый мозг есть частица коллективного разума и общечеловеческой культуры. Коллективный разум человечества непрерывно эволюционирует, поэтому каждый мозг является элементом гигантской динамической системы общественного сознания, межчеловеческих отношений. Более того, человеческий разум, как это гениально увидел еще в 1927 г. В. И. Вернадский, является составной частью жизненной сферы Земли, образуя ноосферу, влияющую на все события в планетном масштабе.

Таким образом, индивидуальное развитие и развитие общественного сознания тесно взаимосвязаны. Охрана развивающегося мозга подразумевает не только изучение формирования конкретных функциональных систем и межсистемных ансамблей, но и широкие социальные мероприятия.

Глава 4. ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ НЕРВНОЙ СИСТЕМЫ

ОБЩИЙ ОБЗОР АНАТОМИИ НЕРВНОЙ СИСТЕМЫ

Основная функция нервной системы — регулирование физиологических процессов организма в зависимости от постоянно меняющихся условий внешней среды. Нервная система осуществляет приспособление (адаптацию) организма к внешней среде, регулирование всех внутренних процессов и их постоянства (го-меостаз) — постоянство температуры тела, биохимических реакций, артериального давления крови, процессов питания тканей и обеспечения их кислородом и т.д. В процессе эволюции животного мира формы поведения животных усложнялись в зависимости от изменения условий существования. Усложнение форм поведения сопровождалось и усложнением структур нервной системы: на новом эволюционном уровне развития, как правило, появлялись новые структуры, которые подчиняли своему контролю более старые нервные образования. Так в конце концов в процессе эволюции достиг высокого развития головной мозг человека.

Нервная система человека делится "а центральную и периферическую.

К центральной нервной системе относятся головной и спинной мозг. Оба они эволюционно, морфологически и функционально тесно связаны между собой и без резкой границы переходят один в другой. Головной мозг является верхним отделом центральной нервной системы и лежит в полости черепа. Спинной мозг — часть центральной нервной системы и представляет собой тяж, расположенный в полости позвоночного канала.

К периферической нервной системе относятся черепные нервы, спинномозговые нервы и нервные сплетения. Нервы доставляют импульсы (приказы действия) из центральной нервной системы непосредственно к рабочему органу — мышце — и информацию с периферии в центральную нервную систему.

Указанные отделы нервной системы называют анимальной (животной) нервной системой. На основании функционально-морфологических особенностей выделяют также так называемую автономную, или вегетативную (растительную), нервную систему. Она имеет определенные центры в головном и спинном мозге и отличия в распределении и строении периферических образований.

Анимальная нервная система занимает основную массу мозгового вещества и обеспечивает работу произвольной мускулатуры всего тела. В связи с последним она получила также название телесной (соматической). В функции анимальной системы входит, кроме того, анализ внешних раздражений, приходящих от органов чувств, рецепторов глубокой и поверхностной чувствительности. Вегетативная нервная система регулирует все "внутреннее хозяйство" организма, воздействуя на непроизвольную мускулатуру, железы внутренней секреции, обменные процессы. Деятельность анимальной системы в значительной степени подвержена волевым усилиям (произвольные движения, целенаправленное восприятие), тогда как функционирование вегетативной системы у нетренированного человека протекает вне сознания.

Элементы анимальной и вегетативной систем представлены как в центральной, так и в периферической нервной системе организма, что указывает на общность принципов их строения и функционирования.


Рис. 4. Строение нейрона (схема): 1 — синаптическое окончание; 2 — дендриты; 3 — аксон; 4 — миелиновая оболочка; 5 — нервно-мышечный синапс; 6 — мышца

Основной структурно-функциональной единицей нервной системы является нервная клетка — нейрон (рис. 4), в котором различают тело клетки и ее отростки — периферические (дендриты) и центральный (аксон). Нервный импульс распространяется всегда в одном направлении: по дендритам — к телу клетки, по аксону — от тела клетки. Таким образом, нейрон — система, имеющая множество "входов" (дендриты) и лишь один "выход" (аксон). Такая закономерность свойственна нервной системе в целом. Количество волокон,

несущих импульсы к центру, превосходит число волокон, несущих импульсы к периферии.

В функциональном отношении нейроны можно подразделить на чувствительные, двигательные и вставочные; во вставочных нейронах происходит предварительная промежуточная переработка импульсов и организуются коллатеральные (окольные) связи. Особенно наглядно такое подразделение нейронов обнаруживается в структурах спинного мозга. Связи между нервными клетками или их отростками устанавливаются при помощи синапсов, в которых происходит переключение импульсов в определенном направлении: от аксона к дендриту или к телу клетки. Синаптические связи осуществляют взаимодействие различных нейронов. Существование полисинаптической нервной сети создает возможность формирования сложных структур, способных относительно автономно регулировать те или иные функции. Комплекс нейронов, участвующих в регуляции какой-либо функции, обозначается как нервный центр. Понятие "нервный центр" применимо больше в физиологическом смысле, поскольку объединение нейронов в единую функциональную группу нередко распространяется на нервные клетки, расположенные в различных и далеко отстоящих друг от друга отделах нервной системы. Хотя в неврологии и употребляются такие термины, как, например, "дыхательный центр головного мозга", "центр мочеиспускания спинного мозга", следует иметь в виду, что регуляция названных функций осуществляется при одновременном участии многих отделов нервной системы. Различные нервные образования, участвующие в регуляции какой-либо определенной функции, носят название функциональной системы. Функциональная система объединяет различные анатомические элементы на основе их участия в организации конкретной функции и представляет собой нечто большее, чем простая сумма свойств входящих в нее элементов. Например, целостную систему регуляции дыхания нельзя свести к особенностям различных уровней организации дыхания.

На анатомическом препарате мозга легко различаются светлые и темные участки. Это белое вещество (скопление нервных волокон) и серое вещество (скопление нейронов). Нервные волокна образованы отростками нервных клеток. Они представляют собой аксоны и дендриты, покрытые слоем глиальных (покровных) клеток. Одной из важнейших функций глии является электроизоляция нервного волокна (см. рис. 2). Волокна имеют различный диаметр, который во многом определяется толщиной покрывающей их миелиновой оболочки. Некоторые волокна почти не содержат миелина. От степени миелинизации периферического нерва зависит скорость проведения нервного импульса. За пределами центральной нервной системы нервные волокна входят в состав двигательных или чувствительных корешков, образующих периферические нервы.

Периферические нервы туловища и конечностей по своему составу смешанные, т.е. несут в себе чувствительные и двигательные волокна. Среди черепных нервов, ядра которых находятся в головном мозге, различают двигательные, чувствительные и смешанные.

Нейроны и их отростки имеют различное строение в соответствии с выполняемыми ими функциями. Из их цепей строятся рефлекторные дуги.

Рефлекторная дуга (рис. 5) состоит из афферентной части (воспринимающей раздражение), эфферентной части (осуществляющей ответ), а также одного, нескольких или многих вставочных нейронов (переработка информации). С помощью рефлекторных дуг осуществляются рефлексы. Рефлекс — ответная реакция на раздражение — является функциональной единицей деятельности нервной системы. Рефлекторный принцип нервной деятельности нельзя рассматривать как простую схему "стимул —реакция". Такая примитивная связь между раздражением и ответной реакцией, как правило, имеет место лишь в двухнейронной дуге. В большинстве же случаев любая реакция — результат сложной переработки информации, координированного участия в процессе эволюции различных отделов нервной системы.


Рис. 5. Рефлекторная дуга коленного рефлекса: 1 — рецепторный аппарат; 2 — чувствительное волокно нерва; 3 — межпозвоночный узел; 4 — чувствительный нейрон спинного мозга; 5 — двигательный нейрон спинного мозга; 6 — двигательное волокно нерва

В современной неврологии принцип рефлекторной дуги существенно дополнен понятием об обратной связи. Обратная связь — это система передачи информации от исполнительного органа к командным центрам. В результате регулирующие центры постоянно получают сведения о том, как выполняются посылаемые ими команды. Тем самым осуществляется автоматическая

саморегуляция различных функций, поддержание каких-либо показателей (например, мышечного тонуса) на определенном уровне.

Наличие обратной связи превращает рефлекторную дугу в рефлекторное кольцо, по которому постоянно циркулируют импульсы. Гипотеза кольцевых регулирующих структур является отражением кибернетических идей, устанавливающих общие закономерности управления и связи в живом организме и машине-автомате.

Чувствительность имеет огромное значение в жизнедеятельности организма. Посредством чувствительности (ощущения) устанавливается связь организма с внешней средой и ориентировка в ней. Чувствительность необходимо рассматривать с точки зрения учения об анализаторах.

Анализатор — сложный нервный механизм, который воспринимает раздражение, проводит его в мозг и анализирует, т. е. разлагает на отдельные элементы. Таким образом, анализатор имеет расположенный на периферии воспринимающий аппарат, проводниковый аппарат (нервные проводники) и находящийся в коре головного мозга центральный аппарат. Корковый отдел анализатора осуществляет анализ и синтез различных раздражений внешнего мира и внутренней среды организма. Различают зрительный, слуховой, обонятельный, вкусовой и кожный анализаторы.

Периферический аппарат анализатора называется рецептором. Рецепторы воспринимают раздражение и перерабатывают его в нервный импульс. Различают экстерорецепторы, воспринимающие раздражения из внешней среды; интерорецепторы, воспринимающие раздражения из внутренних органов организма, и проприорецепторы, воспринимающие раздражения из мышц, связок, сухожилий, суставов. Импульсы в проприорецепторах возникают в связи с изменением натяжения сухожилий, мышц и ориентируют в отношении положения тела в пространстве и совершения движения.

Вид чувствительности связан с типом рецепторов. Болевая, температурная и тактильная чувствительность связаны с экстерорецепторами и относятся к поверхностной чувствительности.


Дата добавления: 2015-09-27 | Просмотры: 903 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.009 сек.)