АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Глава 3. ОСНОВЫ ЭВОЛЮЦИОННОЙ НЕВРОЛОГИИ 8 страница
С древнейших времен известно, что одни люди отвечают на все происходящее бурными реакциями, другие же, наоборот, всегда остаются чрезвычайно спокойными. Важно подчеркнуть, что такой стиль реагирования может оставаться устойчивой характеристикой в течение всей жизни человека и, следовательно, он является врожденной особенностью.
Общий тип реагирования, определяющий стиль поведения, издавна обозначается как темперамент. Существует много классификаций темпераментов, но наибольшую известность имеет типология, описанная еще в античную эпоху.
Античная классификация темпераментов основывалась на наивном представлении о пропорциях различных жидкостей в организме. Отсюда произошли и названия четырех основных типов: холерик (холе — желчь), сангвиник (сангвис — кровь), флегматик (флегма — слизь) и меланхолик (мелан холе — черная желчь). Однако описательные характеристики этих темпераментов точно подмечали реально существующие особенности людских характеров.
Холерик — человек взрывчатый, бурно на все реагирующий, но быстро "остывающий", легко меняющий интересы и увлечения, сангвиник — энергичный, активный, способный доводить начатое дело до конца, флегматик — спокойный, невозмутимый, медленно "раскачивающийся", но стойкий в своих переживаниях, меланхолик — робкий, нерешительный, легко ранимый, однако способный к очень тонким переживаниям и наблюдениям.
И. П. Павловым была раскрыта нейрофизиологическая основа темпераментов. В качестве ведущих характеристик высшей нервной деятельности рассматривались сила, подвижность и уравновешенность процессов возбуждения и торможения. В зависимости от сочетания этих особенностей выделены четыре основных типа высшей нервной деятельности.
Сильный, подвижный, неуравновешенный соответствует холерическому темпераменту; сильный, подвижный, уравновешенный — сангвиническому; сильный, инертный — флегматическому; слабый, тормозимый тип — меланхолическому.
Кроме того, основываясь на особенностях взаимодействия первой и второй сигнальной систем (чувственно-конкретное и речевое восприятия), И. П. Павлов выделил художественный (первосигнальный), мыслительный (второсигнальный) и средний, промежуточный, типы.
Тип высшей нервной деятельности во многом определяется врожденными свойствами нервной системы, но не является совершенно незыблемым, не поддающимся изменениям. Можно даже сказать, что почти любой ребенок в процессе развития совершает эволюцию от холерического, художественного темперамента к уравновешенному, мыслительному. Тем не менее существуют дети явно возбудимые и явно заторможенные, энергичные и пассивные, самоуверенные и робкие, выносливые и утомляемые. В связи с этим в педагогической работе важно учитывать индивидуальные особенности высшей нервной деятельности, проводя в то же время коррекцию мешающих работе характеристик. Особое значение такой подход приобретает в дефектологии, где многие дети нуждаются в специальной помощи при формировании каркаса высшей нервной деятельности.
ВЫСШИЕ КОРКОВЫЕ ФУНКЦИИ
Кора головного мозга является, по существу, гигантским промежуточным центром на пути от рецепторных аппаратов к эф-фекторным. Сюда стекается вся информация, поступающая из внешней и внутренней среды, здесь она сопоставляется с текущими потребностями, прошлым опытом и преобразуется в команды, нередко охватывающие все процессы жизнедеятельности. Здесь вырабатываются принципиально новые решения, а также формируются динамические стереотипы, образующие шаблоны поведения, восприятия и, в ряде случаев, даже мышления.
Связь коры с "периферическими" образованиями — рецепторами и эффекторами — обусловливает специализацию отдельных ее участков. Различные области коры связаны со строго определенными типами рецепторов, образуя корковые отделы анализаторов.
Анализатор — специализированная физиологическая система, обеспечивающая прием и переработку определенного типа раздражений. В нем различают периферический отдел — собственно рецепторные образования — и совокупность промежуточных центров. Наиболее важные центры расположены в зрительном бугре, являющемся коллектором всех видов чувствительности, и в коре больших полушарий. Корковые отделы анализаторов представляют собой высшие, но не конечные, центры, поскольку поступающие сюда импульсы не "оседают" здесь, как в хранилище, а постоянно перерабатываются, преобразуясь в командные сигналы. Эти
команды могут направляться к рецепторным аппаратам, изменяя порог их чувствительности. В результате каждый анализатор функционирует как кольцевая структура, в которой импульсы циркулируют по маршруту рецепторы — промежуточные центры — рецепторы. Разумеется, что от промежуточных центров имеются выходы и к эффекторным аппаратам. Действие же эффекторов, в свою очередь, порождает новые рецепторные сигналы. В итоге формируются сложные кольцевые системы: рецептор — промежуточные центры — эффектор — рецептор. Такие системы могут иметь несколько уровней замыкания (продолговатый, межуточный мозг), но высшим является корковый. Низшие уровни регуляции характеризуются жестким автоматизмом, высшие, особенно корковые, отличаются большей гибкостью и изменчивостью.
Основные корковые отделы анализаторов имеют следующее расположение (см. рис. 9): зрительный анализатор — в затылочной коре, слуховой — в височной, поверхностная и глубокая чувствительность — в задней центральной извилине, двигательный анализатор — в передней центральной извилине. Обонятельный анализатор располагается в эволюционно более древних отделах коры, включающих аммонов рог и поясную извилину. Вкусовая чувствительность и рецепция от внутренних органов имеют менее определенное корковое представительство, концентрируясь в основном в глубинных отделах сильвиевой борозды.
Каждый анализатор представлен в симметричных отделах правого и левого полушарий мозга. Двигательный и чувствительный анализаторы связаны с противоположной половиной тела. Корковые представительства слухового, вкусового и обонятельного анализаторов в каждом полушарии имеют связи с обеими сторонами. В зрительную кору (затылочная область) проецируется информация от половины поля зрения каждого глаза, причем в левое полушарие — от правых половин, в правое — от левых половин полей зрения.
Из анатомических особенностей следует, что расстройства движений, чувствительности и зрения возможны при поражении соответствующего участка одного из полушарий. Данные нарушения возникают на стороне, противоположной локализации патологического очага. Корковые расстройства слуха, вкуса и обоняния наблюдаются только при двустороннем поражении анализаторных зон или их связей.
Наличие симметричных анализаторных отделов в правом и левом полушариях не означает их полной равноценности. Многочисленными экспериментами доказано существование функциональной асимметрии мозга. Ее суть заключается в том, что правое и левое полушария выполняют несколько различные функции. Различают доминантное и субдоминантное полушария. В доминантном располагаются центры речи и письма, в
субдоминантном соответствующие центры отсутствуют. Чаще всего доминантным полушарием является левое, и расположение в нем речевых центров обычно совпадает с праворукостью — преобладанием правой руки над левой.
В случаях выраженной леворукости доминантным может быть правое полушарие. Однако вопрос о левшестве далеко не прост. В процессе воспитания большинство родителей приучают детей пользоваться преимущественно правой рукой. Трудно сказать, какое полушарие доминирует у "переученных левшей". Кроме того, встречаются случаи амбидекстрии — примерно одинакового владения обеими руками. Сложно оценивать также степень функциональной асимметрии мозга. Тем не менее эта асимметрия существует, о чем убедительно свидетельствуют результаты исследований по изолированному выключению активности правого или левого полушария, а также клинический анализ право- и левополу-шарных поражений мозга. Роль каждого из полушарий освещена подробнее при описании отдельных высших корковых функций.
Изучение микроскопической структуры корковых отделов анализаторов показало, что в каждом таком отделе существуют два типа клеточных зон. В центре коркового представительства анализатора располагаются первичные клеточные поля, называемые также проекционными. Их особенность состоит в том, что они имеют непосредственную связь с периферическими отделами анализатора и являются, таким образом, первыми получателями информации (или отправителями — в случае двигательного анализатора). Первичные клеточные поля отличаются высокой специфичностью, т.е. настроены на прием информации от определенных типов рецепторов. Кроме того, в этих полях нередко наблюдается и вполне определенное расположение представительств отдельных рецепторных зон. Так, в задней центральной извилине каждая часть тела имеет свою область проекции: в верхних отделах — нижняя конечность, в средних — рука, в нижних — лицо. Аналогичная картина наблюдается и в передней извилине. В зрительной коре различные квадранты полей зрения (квадрант — четвертая часть) проецируются в строго определенные участки.
Таким образом, в первичных, или проекционных, зонах наблюдается высокая избирательность в приеме информации и специальная представленность отдельных рецепторных зон.
В периферических отделах корковых представительств анализаторов располагаются вторичные, или проекционно-ассоциационные, клеточные зоны. Для них характерны гораздо меньшая специализированность в приеме информации и отсутствие прямой связи с периферией. В то же время эти зоны способны устанавливать контакты с другими отделами коры, а также образовывать внутри себя сложные комплексы, в которых, как считается, фиксируется прошлый опыт.
Таким образом, вторичные клеточные зоны, надстраиваясь над первичными, обеспечивают более сложную переработку информации и формируют при каждом анализаторе специализированные блоки памяти.
При оценке площади, занимаемой первичными и вторичными клеточными зонами анализаторов, нетрудно увидеть, что значительные пространства поверхности коры остаются как бы "незанятыми". К таким "свободным" территориям относятся прежде всего обширная теменно-височно-затылочная область и участки лобной доли кпереди от передней центральной извилины. Между тем именно эти отделы коры неуклонно увеличиваются по мере эволюционирования и достигают наибольшего развития у человека. Специальные исследования показывают, что в этих отделах располагаются третичные корковые зоны.
Для третичных клеточных зон характерна способность к восприятию многоплановой информации; здесь отсутствует узкая специализированность. В третичных зонах осуществляется межанализаторный анализ и синтез информации, что обеспечивает комплексную память, организацию работы мозга в целом. При этом многомерный, многоплановый анализ окружающей действительности осуществляется преимущественно в височно-теменнозатылочной области, а планирование действий, разработка сложных программ поведения производится главным образом в лобной доле. Именно в третичных зонах формируются центр речи, письма, счета, зрительно-пространственной ориентировки. Здесь фиксируются также навыки, приобретенные человеком в процессе его социального обучения. Важно отметить, что функциональная асимметрия мозга особенно наглядно выступает в работе третичных зон. Доминантное и субдоминантное полушария вносят неоднозначный вклад в осуществление "третично организованных" корковых функций.
Учитывая наличие различных клеточных зон, можно считать, что в коре головного мозга происходят две основные группы процессов: внутрианализаторные (первичные и вторичные зоны) и межанализаторные (третичные зоны). Если же подходить к этим процессам с позиций рефлекторного принципа, то они заключаются в анализе средовых воздействий, организации ответных реакций и обучении. Данные функции получили специальные наименования.
Анализ средовых воздействий на высшем уровне по существу представляет собой распознавание, т.е. сопоставление получаемой информации с накопленной ранее. Эта функция называется гнозисом (гнозис — узнавание). Операции гнозиса могут осуществляться как в пределах одного анализатора, так и при взаимодействии анализаторов.
Выработка программ действий и осуществление этих программ носит название праксиса (праксис — действие). Как правило,
праксис требует участия нескольких анализаторов (по крайней мере двигательного и чувствительного), ибо ни одно действие невозможно без рецепторного контроля.
Обучение сводится прежде всего к формированию памяти. Кроме того, память совершенно необходима в операциях гнозиса и прак-сиса. Ведь распознавание — это сравнение с уже известным, т. е. зафиксированным в памяти. В свою очередь, построение программы действий — это прежде всего подбор готовых шаблонов, опять-таки хранящихся в памяти. Блоки памяти существуют при каждом анализаторе, а также на уровне межанализаторных систем. Особое место занимает смысловая память, являющаяся основой языка и мышления.
Разнообразные сложные рецепторы перекодируют в нервные импульсы лишь физико-химические характеристики раздражителей: длину световой волны, частоту колебаний воздуха, температуру и т.д. Однако на основании этих элементарных сведений у человека создаются весьма сложные представления об окружающем мире. Например, взгляд фиксирует предмет, и о нем делаются следующие заключения: "Что-то большое, находится далеко, движется, приближается ко мне, движется очень быстро, это автомобиль (это легковой автомобиль, это машина "волга")". Практически ни одно из приведенных заключений (за исключением "движется") не может быть сделано без учета предварительного опыта. "Большое" — значит нужно иметь представление о маленьком, "находится далеко" — необходимо оценить расстояние, "приближается ко мне" — оценка траектории движения, "движется очень быстро" — оценка скорости. Вся работа производится автоматически, неосознанно. Опознавание в предмете автомобиля, да еще и его марки, — уже чисто человеческая функция. Однако оценка величины, скорости движения объекта является результатом обучения. Наблюдения за развитием ребенка убедительно показывают, что способность различать большие и малые предметы, определять расстояние до них, направление их движения формируются с возрастом, по мере приобретения жизненного опыта. Следовательно, гнозис — функция, формирующаяся в процессе обучения и поэтому наиболее ранимая в детском возрасте.
Приведенный пример, кроме того, показывает, что уровней гностических операций может быть очень много — от определения наиболее простых характеристик (большое — маленькое) до сложных синтетических заключений (марка автомобиля). По всей вероятности, первичные клеточные зоны осуществляют элементарные гностические функции, а вторичные — более сложные. Комплексное распознавание осуществляется в третичных зонах.
Наличие иерархичности, многоступенчатости уровней гнозиса подтверждается клинической практикой. В зависимости от степени поражения коркового отдела анализатора варьирует выраженность
гностических расстройств — от полной агнозии (агнозия — нарушение гнозиса) до частичной утраты способности распознавания.
Чаще всего расстройства гнозиса затрагивают какую-либо одну анализаторную систему при сохранности остальных. Различают зрительные, слуховые, обонятельные, вкусовые, тактильные агнозии (см. главу 6).
Любое сложное целенаправленное действие требует для своего осуществления предварительной информации. Эта информация может представлять собой условнорефлекторный раздражитель, запускающий уже сформированную реакцию или цепь таких реакций в виде динамического стереотипа. В более сложных случаях поступающая информация подвергается тонкому анализу на уровне третичных зон височно-теменно-затылочной области. На основе такого анализа вырабатываются двигательная задача и двигательная программа ("что сделать?" и "как сделать?").
Формулирование двигательной задачи ("что сделать?") — результат интегральной деятельности мозга, учитывающей текущие потребности и личный опыт. Сама по себе эта задача может представлять собой комплекс из серии последовательных заданий, ведущих поэтапно к достижению конечной цели. В частности, намерение позвонить по телефону разворачивается в виде плана действий (снять трубку, набрать номер, дождаться ответа). Даже этот простой пример показывает, что конечная цель действия должна прочно удерживаться в памяти, чтобы управлять всей последовательностью манипуляции. Стойкость намерений имеет огромное значение и для разработки двигательных программ ("как сделать?").
Важнейшая особенность поведения, основанного на высшей нервной деятельности, заключается в том, что одна и та же цель может достигаться различными способами. Так, намереваясь позвонить по телефону, мы можем держать трубку правой или левой рукой, вращать диск указательным или другим пальцем, разговаривать стоя, сидя, лежа. Только стойко фиксированная задача способна организовывать разнообразные двигательные акты в планомерное действие.
Двигательные акты нередко представляют собой сложные автоматизированные шаблоны, врожденные или закрепленные в процессе обучения. Все та же процедура телефонного звонка состоит из подобных автоматизмов. Подойдя к аппарату, мы не задумываемся, с чего начать, а поднимаем трубку, подносим ее к уху и ждем гудка. Затем набираем номер, вращая диск положенное число раз. Кажется нелепым, подняв трубку, думать о том, а что же делать дальше, или бесконечно вращать диск. Следовательно, существуют особые механизмы, обеспечивающие не только правильный подбор необходимых автоматизмов, но и их своевременную смену по мере приближения к цели. Этот слитный набор
сменяющих друг друга автоматизмов обозначается иногда как "кинетическая мелодия" ("кинезис" — движение).
Любой двигательный акт, даже самый простой, не может быть точно выполнен без постоянного афферентного контроля. Неврологической основой такого контроля является система глубокой чувствительности, информирующая двигательные центры о степени напряжения сухожилий, мышц, о положении конечностей в пространстве. Ведущую роль афферентного, кинестетического (кинестезия — буквально: ощущение движения) контроля в регуляции движений убедительно раскрыли выдающиеся советские физиологи Н. А. Бернштейн и П. К. Анохин.
Благодаря кинестетической системе между исполнительным органом и командным центром образуется звено так называемой обратной связи. По каналу обратной связи постоянно поступает информация о ходе выполнения двигательных команд и тем самым создается возможность систематической коррекции выполняемого движения. Более того, без кинестетической системы невозможна предварительная настройка двигательного аппарата для совершения какого-либо движения. Иными словами, речь идет о принятии изначальной позы — о соответствующем перераспределении тонуса мышцы. Например, для того чтобы согнуть руку в локтевом суставе, необходимо предварительно расслабить разгибатели предплечья.
Таким образом, механизм целенаправленного действия представляет собой сложнейшую функциональную систему. Важнейшими процессами в этой системе являются предварительный афферентный синтез для формирования двигательной задачи, обеспечение стойкости двигательной задачи, выбор необходимых двигательных автоматизмов, обеспечение "кинетической мелодии" — своевременного переключения автоматизмов, постоянный кинестетический контроль. Сложный механизм совершения целенаправленного действия называется праксисом.
Нарушение любого из перечисленных процессов приводит к расстройствам целенаправленного действия — апраксии. Характер апраксии зависит от того, какие отделы двигательной функциональной системы поражены. Эти отделы имеют определенную мозговую локализацию.
Предварительный афферентный анализ и синтез осуществляются в височно-теменно-затылочной области, где формируется так называемый центр праксиса.
Стойкость двигательной задачи, выбор автоматизмов и формирование "кинетической мелодии" регулируются лобными долями мозга.
Кинестетический контроль осуществляется при помощи коркового отдела анализатора глубокой чувствительности (задняя центральная извилина и вторичные зоны этого анализатора).
При обсуждении гностических и праксических функций неоднократно указывалось на роль памяти: на ее необходимость в процессах распознавания, ее первостепенную важность в организации устойчивых целей деятельности. Речь шла о так называемых модально-специфических формах памяти, т. е. о процессах фиксирования и извлечения из хранилищ информации, связанной с определенным анализатором. В психологии и педагогике издавна известны зрительная и слуховая память, случаи явного преобладания одной из них. Хранилище автоматизмов действия тоже представляет собой модально-специфическую форму памяти, ибо оно связано прежде всего с двигательным анализатором.
Наряду с механизмами модально-специфической анализаторной памяти существуют системы, влияющие на общие характеристики процессов запоминания. Эти общие характеристики заключаются в следующем: скорость запоминания, объем памяти, быстрота воспроизведения зафиксированного материала (скорость вспоминания).
Любой раздражитель, чтобы быть зафиксированным в памяти, должен на некоторое время "задержаться" в нервной системе. Различают поэтому кратковременную и долгосрочную память. Кратковременная память рассчитана как раз на то, чтобы имелась возможность оценить поступающую информацию и решить, переводить ли ее на долгосрочное хранение. "Решение" не всегда означает сознательное действие. Во многих случаях "решить" означает автоматически сопоставить поступающую информацию с уже имеющейся и определить ее ценность. Например, пришивающий пуговицу человек, если он вдруг уколется иголкой, тотчас же забывает об этом происшествии как не имеющем информативной ценности. "Иголка довольно часто колет" — это не мысль, а мгновенный результат оценки информации, моментально стирающий из кратковременной памяти след раздражителя.
Каким образом осуществляется сличение данного сигнала со всеми хранящимися в памяти, неизвестно. Во всяком случае, это происходит чрезвычайно быстро.
Допустим, в вашем владении находится библиотека в 2000 книг. Перечисляя все их названия, вы неизбежно что-то упустите. Но стоит спросить об определенной книге, как вы тотчас же ответите, есть она у вас или нет.
Скорость извлечения информации, как и быстрота ее фиксации, связана с модально-неспецифическим механизмом, роль которого играют внутренние отделы височно-лобной области. Наряду с модально-неспецифической памятью существуют механизмы иных мнестических операций. В частности, известно, что каждый человек способен запоминать произвольно и непроизвольно. Произвольное запоминание обусловлено заданием: нужно зафиксировать. Непроизвольное запоминание неподотчетно контролю
сознания ("просто запало в память"). В ряде исследований доказано, что непроизвольное запоминание обеспечивается в основном правополушарными зонами, тогда как осмысленное, произвольное осуществляется при участии левополушарных центров.
Наконец, существует организованная мнестическая деятельность, заключающаяся в осмысленной фиксации материала и планомерном извлечении его из хранилищ памяти. Что касается осмысленной фиксации, то дается команда: "Это важно, это пригодится". Простота такой команды, конечно, вовсе не означает, что не происходит никакого восприятия информации, ее анализа, сравнения с имеющимися данными и, наконец, заключения: "Необходимо запомнить". Однако извлечение нужной информации из памяти представляется гораздо более сложной и гораздо менее понятной процедурой. Например, на вопрос о дне рождения какого-либо человека могут быть получены три варианта ответов: "Никогда не знал!", "Знал, но забыл!", "Сейчас вспомню!" Спрашивается, каким образом человек сразу же определяет, что ему следует ответить в том или ином случае. Во всяком случае, в этих процессах активного запоминания и вспоминания принимают непосредственное участие лобные доли. Именно их организующее влияние определяет активность и результативность процессов памяти.
При поражении лобных долей нарушается планомерная обработка, осмысление материала с целью его запоминания. Заметное влияние оказывает также неустойчивость намерений. Больной, собираясь зафиксировать в памяти предлагаемый ему материал, вскоре отвлекается от поставленной задачи, его внимание начинают привлекать второстепенные детали. При попытках вспомнить также обнаруживается дефект стойкости намерений. Больной как бы забывает, что же он собирался вспомнить, и извлекает из памяти не относящуюся к делу информацию.
СОЗНАНИЕ, БОДРСТВОВАНИЕ И СОН
Многочисленные гностические и праксические операции совершаются за порогом сознания. В сферу сознания попадают в основном результаты деятельности гностико-праксических механизмов. Например, разыскивая на вокзальной площади часы, мы не задаемся вопросом, как их распознать. Произнося фразу, мы обычно не знаем, какое слово будет в ней завершающим: оно появляется как бы само собой. Даже размышляя о чем-то, мы не можем с определенностью сказать, как мы это делаем.
Сказанное не означает, что сознание является пассивным "получателем" результатов бессознательной работы. Сознание определяет цели и задачи мозговой деятельности и всегда может вмешаться в бессознательные процессы. В физиологическом смысле
сознание — это произвольная концентрация мозговой активности. Однако до сих пор остается неясным, каким образом мысль, являющаяся продуктом работы мозга, может определять направление мозговой деятельности.
В то же время известно, что степень мозговой активности в значительной степени обеспечивается лобно-лимбико-ретикулярным комплексом, включающим в себя лобные доли, лимбическую систему и ретикулярную формацию. Эти отделы мозга влияют на общий мозговой тонус, способны переключать внутреннюю энергию на определенные нервные процессы. Именно поэтому слабый раздражитель, легкий намек способны вызвать бурную реакцию.
Энергетический, тонизирующий блок мозга принимает также активное участие в регуляции суточного ритма сна — бодрствования. Современные исследования показывают, что сон вовсе не является спокойным, бездеятельным состоянием, как считалось ранее. Наоборот, некоторые отделы мозга работают во время сна с повышенной активностью. Таким образом, сон — не выключение, а смена формы нервной деятельности.
Электрофизиологически доказано существование так называемого быстрого и медленного сна. Во время медленного сна на электроэнцефалограмме преобладают медленные высокие волны. Во время быстрого сна электрофизиологические показатели мозговой активности резко меняются: возникают остроконечные волны, движения глазных яблок. Установлено, что во время быстрого сна человек видит сновидения.
В настоящее время сновидения рассматривают не как результат случайного взаимодействия полузаторможенных нервных центров, а как врожденную способность к переработке информации, во время которой хранилища памяти освобождаются от ненужных сведений, неотреагированные раздражители получают внутренний, по существу — бездейственный ответ. Самый показательный пример в этом отношении — исполнение желаний во сне.
Нормальная регуляция поведения немыслима без постоянной блокировки побочных нежелательных реакций. Однако намерения осуществить эти реакции остаются в памяти и своеобразно реализуются во время сновидений. Таким образом, сон — это не пассивный отдых, а активная разгрузка каналов информации.
Изучение результатов искусственного блокирования быстрой фазы сна показывает, что уже через несколько дней такого режима исследуемые начинают ощущать внутреннюю напряженность, становятся агрессивными. У многих возникают галлюцинации. Все это свидетельствует о биологической необходимости быстрой фазы сна. Считается также, что одной из причин белой горячки является блокирование быстрого сна алкоголем, в связи с чем возникает предрасположенность к галлюцинациям, сну наяву.
Электрофизиологические данные убедительно свидетельствуют о том, что в среднем 25 % времени сна взрослого человека занимает быстрая фаза. Обычно наблюдается чередование быстрой и медленной фаз, но быстрый сон наиболее часто отмечается перед пробуждением. Утверждения некоторых людей о том, что они никогда не видят сновидений, вероятно, связаны с неспособностью запомнить содержание сна. Примечательной особенностью является значительно больший удельный вес фазы быстрого сна у грудных детей (50—60 % общего времени сна). Остается невыясненным, видят ли грудные дети гораздо больше сновидений, чем взрослые, или речь идет о формах мозговой активности, присущей созревающей нервной системе.
Нейропсихологический анализ высших корковых функций сводится не только к обнаружению дефекта, но и к выявлению степени сохранности других функциональных звеньев. Только сопоставление нарушенного и сохранного позволяет определить локализацию патологического очага и наметить возможные "зоны роста", которые могут быть использованы при коррекционной работе.
В коррекционно-педагогической деятельности чрезвычайно важное место занимает положение о том, что почти любая "мозговая задача" может быть решена различными способами. Главное заключается в том, чтобы добиться устойчивого формирования цели. При выборе же конкретных методов решения могут быть использованы разнообразные пути, в том числе обходные, если какая-либо анализаторная система оказывается дефектной.
Дата добавления: 2015-09-27 | Просмотры: 596 | Нарушение авторских прав
|