АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Анализ суммарной ДНК — новые сведения о структуре генома человека

Прочитайте:
  1. B) любые сведения, полученные в ходе производства по делу с соблюдением требований уголовно-процессуального законодательства, имеющие отношение к делу
  2. B) Нарушение анализа смысловых структур у больных с поражением лобных долей мозга
  3. I. Общие сведения
  4. I. Общие сведения.
  5. I. ПОЛИЕНОВЫЕ АНТИБИОТИКИ.
  6. II. Анализ ритма
  7. II. Анализ ритма
  8. II. Краткие анамнестические сведения и катамнез.
  9. IV. Анализ Конвенции 20 марта 1883 г.
  10. IV. Анализ предложенного определения

На первом этапе непосредственного исследования структуры генома человека, когда еще не существовала методология генной инженерии, для изучения ДНК применяли традиционные физико-химические методы. В этих опытах использовали суммарные препараты ДНК, целиком выделенные из ядер клеток человека.

Пожалуй, первые сведения о молекулярной структуре генома человека были получены в результате центрифугирования в пробирке растворов ДНК в хлористом цезии при довольно высоких скоростях. В процессе вращения соли цезия создают тонкие слои раствора с различной плотностью (градиент плотности) вдоль пробирки и молекулы ДНК перемещаются в этом градиенте, пока не достигнут такой области, где плотность солевого раствора будет точно такой же, как их собственная. А плотность ДНК сильно зависит от содержания АТ и ГЦ-пар нуклеотидов, т. е., как говорят, от нуклеотидного состава. Оказалось, что основная масса ДНК человека после центрифугирования располагается преимущественно в одной зоне градиента (это соответствует среднему содержанию ГЦ-пар в геноме человека, равному 42%). Однако наряду с этим неожиданно обнаруживались и небольшие (минорные) полосы, в которых также содержались молекулы ДНК, но с иной плотностью и, следовательно, с иным содержанием нуклеотидных пар. Такие минорные, или дополнительные фракции ДНК получили название «сателлитных». Такое имя дали этим фракциям не случайно. В то время как раз был запущен первый советский спутник (лат. satellitis — спутник). Это и натолкнуло исследователей на такое название.

Вскоре после того, как была установлена двухспиральная структура ДНК, обнаружили, что при сильном нагревании ДНК две ее цепи расходятся (расплавляются) и ДНК из двунитевой превращается в однонитевую. Это приводит к нарушению ее естественной структуры, что получило отражение в названии данного процесса — денатурация ДНК. Однако при охлаждении денатурированной ДНК комплементарные цепи находят друг друга и соединяются строго так, как они располагались в исходной неденатурированной молекуле, по типу застежки — «молнии». Этот процесс получил название ренатурации или реассоциации. Сразу же после обнаружения этого явления оно было использовано экспериментаторами в целях изучения структуры генома.

Немного совсем простой математики для тех самых любопытных, кто недавно закончил ВУЗ, изучал химию и еще не забыл все, чему его учили. Процесс реассоциации ДНК во многом сходен с обычной химической реакцией второго порядка и, по этой причине, может быть описан довольно простой формулой:

Сt /C0 = 1/(1 + k2 (C0 t)),

где C0 и Сt — концентрации однонитевых ДНК соответственно в начальный (нулевой) момент времени и в момент времени t после начала реакции реассоциации, k2 — константа скорости реакции второго порядка.

Для удобства изображения процесса реассоциации строят график, в котором по оси ординат откладывают долю реассоциированных молекул, а по оси абсцисс — величину C0 t. При таком изображении кривые кинетики реассоциации ДНК простейших организмов (вирусов и бактерий) имеют S-образный вид. Это соответствует кинетике химической реакции второго порядка. Если в эксперименте наблюдают отклонения от этой кривой, то это должно указывать на гетерогенность цепей ДНК по скорости взаимодействия друг с другом: одни реагирует быстрее, другие, соответственно, медленнее. Когда ДНК человека порезали на куски небольшого размера и измерили кинетику их реассоциации, то обнаружилось, что кривая, описывающая этот процесс, далека от стандартной (рис. 12).

Это явилось результатом того, что в ДНК человека имеются нуклеотидные последовательности, реассоциирующие с разной скоростью, а суммарная кривая реакции, наблюдаемая в опыте, отражает совокупность множества независимых реакций второго порядка. Когда были проведены эти эксперименты, уже существовал математический аппарат, позволяющий, хотя и очень грубо, вычленять из сложной суммарной кривой отдельные относительно однородные кинетические компоненты. Различия в скоростях реассоциации разных компонентов ДНК человека были связаны с разной представленностью в ДНК отдельных нуклеотидных последовательностей. Участки, которые присутствуют в геноме всего один раз, назвали уникальными. Если в геноме определенная нуклеотидная последовательность не уникальна, а представлена неким числом одинаковых копий (т. е. повторяется, отсюда и название — повторяющаяся), то такая последовательность, естественно, по чисто химическим законам, будет в растворе находить комплементарную цепь и взаимодействовать с ней (реассоциировать) значительно быстрее первой.

В результате такого анализа нашли, что в геноме человека около 75% участков ДНК представлены 1 копией (уникальные) на гаплоидный геном (естественно, в ядре, являющемся диплоидным, имеется 2 копии каждой уникальной нуклеотидной последовательности). Остальную часть генома составляют повторяющиеся последовательности (повторы), среди которых 10% представлены очень быстро реассоциирующими повторами (104 и более копий на геном) и около 15% — умеренными повторами. Заметим сразу, что в дальнейшем эти оценки были существенно пересмотрены. Однако некоторые из этих результатов остались в силе до сих пор.

Рис. 12. Кинетика восстановления двунитевых молекул из искусственно разделенных комплементарных цепей ДНК человека (реассоциация). ДНК разбивают на небольшие фрагменты, денатурируют путем нагревания, а затем при охлаждении разошедшиеся цепи ДНК вновь соединяются. Чем чаще в смеси встречаются те или иные последовательности, тем быстрее они находят друг друга в растворе и реассоциируют. По этой кинетике определяли общее содержание повторяющихся и неповторяющихся (уникальных) нуклеотидных последовательностей в геноме человека

Первоначальные анализы показали, что среди быстро взаимодействующих друг с другом при реассоциации фрагментов ДНК присутствует некоторое количество таких, кинетика реассоциации которых отличается от реакции второго порядка. Причина этому оказалось в том, что эти участки представляют собой так называемые обращенные повторы, или палиндромы — взаимокомплементарные последовательности, расположенные не на разных, а на одной нити ДНК.

Таким образом, в ДНКовом текте присутствуют «предложения» — палиндромы («перевертыши»), одинаково читаемые слева направо и справа налево. Перевертыши хорошо известны из литературы — это предложения, которые читаются одинаково слева направо и справа налево без учета знаков препинания и интервалов между словами. В качестве примера приведем один из таких перевертышей:

УЖРЕДКОРУКОЮОКУРОКДЕРЖУ.

В ДНК перевертышами называют отрезки двойной антипараллельной спирали, которые имеют одинаковую нуклеотидную последовательность при чтении по обеим цепям в одинаковом направлении. Это выглядит как, например, в ниже приведенном случае:

Здесь стрелками показано направление цепей ДНК, а звездочками — водородные связи, образуемые между парами нуклеотидов. Общее число таких «перевертышей» в геноме человека оценено в интервале от 105 до 106. При этом они относительно равномерно распределены по ДНК.

Имеются в геноме человека и нуклеотидные последовательности, которые на всем своем протяжении построены из одной единственной «буквы». Если в одной цепи ДНК эта буква А, то в другой цепи, соответственно, будет буква Т. Такие участки названы гомополимерными. В случае приведенного выше примера последовательность нуклеотидов записывается, как поли(А) — поли(Т). Таким образом, выяснилось, что в геноме человека (а параллельно это изучали и в геномах других организмов) имеются все варианты нуклеотидных последовательностей, состоящих из 4 «букв», которые только можно себе мысленно представить.

Используя различные модификации метода реассоциации ДНК, установили также, что в большей части генома человека повторяющиеся и уникальные нуклеотидные последовательности перемежаются друг с другом, а средние длины перемежающихся повторяющихся и уникальных фрагментов ДНК составляют соответственно 300 и 2000 п. н.

Приведенные выше данные были, конечно же, усредненными и поверхностно отражали общую картину устройства генома человека. Тем не менее они послужили хорошей основой для дальнейших более углубленных исследований. Важно, что одновременно такие же работы проводились и с использованием других эукариотических организмов. Многие моменты оказались сходными у разных высших организмов и растений. Так постепенно начали вырисовываться в общих чертах основные принципы организации генома человека.


Дата добавления: 2015-10-11 | Просмотры: 699 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)