АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Торможение в центральной нервной системе.Виды торможения, его механизмы, значение)

Прочитайте:
  1. A. Раздражение нижних отделов левой постцентральной извилины.
  2. V. Анатомия центральной нервной системы
  3. VII. АНАТОМИЯ ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ
  4. Анатомия и основные функции нервной системы.
  5. Анатомия нервной системы
  6. Анатомия нервной системы человека
  7. Аномалии развития нервной системы. Черепно-мозговые грыжи. Спинномозговые грыжи. Краниовертебральные аномалии.
  8. Безусловное и условное торможение
  9. Биохимические особенности нервной ткани
  10. БОЛЕЗНИ НЕРВНОЙ СИСТЕМЫ

Впервые идею о том, что в ЦНС помимо процессов возбуждения существует процесс торможения, высказал И.М. Сеченов.

Если рассмотреть «архитектуру» использования тормозных нейронов при организации нейронных сетей, цепей и рефлекторных дуг, то можно выделить ряд вариантов этой организации (это отражается в названии данного вида торможения).

1. Реципрокное торможение. Как пример: сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя. Явление открыто Ч. Шеррингтоном.

2. Возвратное торможение. Альфа-мотонейрон, к примеру, посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС - она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона сам себя тормозит.

3. Существует ряд вариантов возвратного торможения, в частности, латеральное торможение. Суть его сводится к тому, что активируется, например, фоторецептор, он активизирует биполярную клетку, и одновременно активируется рядом расположенный тормозной нейрон, который блокирует проведение возбуждения от соседнего фоторецептора к ганглиозной клетке. Этим самым происходит «вытормаживание» информации в соседних участках. Таким способом создаются условия для четкого видения предмета (две точки на сетчатке рассматриваются как две раздельные точки в том случае, если между ними есть невозбужденные участки).

16) (Общие принципы координационной деятельности ЦНС)

 

Координация - это объединение действий в единое целое, объединение различных нейронов в единый функциональный ансамбль, решающий конкретную задачу. Координация способствует реализации всех функций ЦНС. Выделяют следующие принципы координации (их много, в лекции даются наиболее важные).

1. Явление конвергенции (концентрации) или принцип общего конечного пути. Многие нейроны оказывают свое воздействие на один и тот же нейрон, т. с. имеет место схождение потоков импульсов к одному и тому же нейрону. Ч. Шеррингтон называл это «принцип общего конечного пути». Например, сокращение мышцы (за счет возбуждения альфа-мотонейрона) можно вызвать путем растяжения этой мышцы (рефлекс мышечных веретен) или путем раздражения кожных рецепторов (сгибательный рефлекс) и т.п.

2. Явление дивергенции (иррадиации). Каждый нейрон за счет вставочных нейронов и многочисленных ветвлений (дивергенции) дает поток импульсов ко многим нейронам. Если бы этот механизм не ограничивался торможением, то благодаря дивергенции отсутствовала бы возможность координации работы ЦНС. Но тормозные процессы ограничивают дивергенцию и делают процессы управления точными. Когда торможение снимается, то имеет место полнаядискоординация в деятельности ЦНС (например, при столбняке).

3. Принцип рсципрокной иннервации (см. Торможение; реципрокное торможение).

4. Принцип обратной связи и копий эфферентаций. Это один из важнейших принципов координации: невозможно точно координировать, управлять, если отсутствует обратная связь, т.е. данные о результатах управления. Осуществляется эта связь за счет потока импульсов с рецепторов. Этот принцип широко обсуждается в физиологии ЦНС, о нем уже говорил И.М. Сеченов, много внимания ему уделил П.К. Анохин.

Копия эфферентации. Для управления важно иметь информацию о том, какие команды посылаются на периферию. Известно, что в системах, управляющих скелетными мышцами, каждый отдел, посылая сигнал управления к работающей мышце, одновременно сообщает об этом вышележащему отделу. Это вариант обратной связи.

5. Принцип доминанты. Был открыт А.А. Ухтомским. Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, реализация которых представляет наибольший «интерес» для организма, т.е. они в данный момент времени самые важные. Поэтому эти рефлексы реализуются, а другие - менее важные - тормозятся.

6. Пластичность нервных центров. Для врача особенно важно знание этого свойства (принципа): при повреждении отдельных центров мозга их функция может перейти к другим структурам мозга (конечно, если повреждение центра не связано с наступлением смерти, что, например, бывает при нарушении дыхательного центра). Замещение утраченной функции - важнейшее приобретение ЦНС (известно, что нейроны ЦНС, как правило, не восстанавливаются) - оно позволяет восстанавливать утраченные свойства. Показано, что процесс возмещения утраченных функций осуществляется при обязательном участии коры больших полушарий: у животных, которым после восстановления нарушенных функций удаляли кору, вновь имела место утрата этой функции.

7. Принцип субординации или соподчинения. В ЦНС имеют место иерархические взаимоотношения - начальник (кора) и подчиненные (сверху вниз - базальные ганглии, средний мозг, продолговатый, спинной) и соподчинение - нижележащий отдел подчиняется указаниям вышележащего отдела.

Информационная функция нервной системы. Процесс восприятия сигнала, обработка его и посылка к исполнительной системе связаны с кодированием, «шифрованием» информации. Это происходит уже на уровне отдельной нервной клетки.

Для процесса передачи информации большое значение имеет скорость ее передачи.Важное значение в передаче информации имеет также надежность. Для обеспечения надежности передачи информации в нервной системе используется принцип структурной и функциональной избыточности. Структурная избыточность выражается в дублировании каналов связи, дублировании элементами, реагирующими на данный сигнал, дублировании системами, включающимися в реакцию. Функциональная избыточность обеспечивается «излишним» числом импульсов в разряде нервной клетки, существенным повышением возбудимости нервных структур и др.

Считают, что нервные импульсы передают информацию двоичным кодом (наличие импульса - отсутствие импульса). Из такого представления следует, что количество информации определяется числом импульсов в единицу времени.

 

17) (Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы)

 

(симпатический)

Центральные структуры симпатического отдела вегетативной нервной системы расположены в спинном мозге. Они занимают пространство боковых рогов серого вещества от восьмого шейного сегмента до второго-третьего поясничного (спинномозговой центр Якобсона). Миелинизированные аксоны этого центра выходят в составе передних корешков спинного мозга.

Периферическая часть симпатического отдела состоит из двух пограничных стволов — цепочек паравертебральных ганглиев, лежащих по краям позвоночника. Ганглии в цепочке связаны между собой межузловыми ветвями (коннективами). Существуют и комиссуральные связи между симметричными ганглиями. В шейном и нижнем крестцовом отделах симпатического ствола преганглионарные нервы подходят к ганглиям не из своих сегментов спинного мозга, а из ниже- или вышележащих сегментов через коннективы ствола. В этом случае веточки проходят через ганглии, не переключаясь в них и оставаясь миелинизированными.

В шейном отделе имеются три шейных узла, образовавшиеся в онтогенезе при слиянии восьми симпатических ганглиев. Два верхних шейных узла иннервируют сонную артерию, глотку, пищевод, слюнные и щитовидные железы и сердце. Нижний шейный узел, в свою очередь, сливается с верхним грудным симпатическим узлом, образуя крупный звездчатый ганглий. Звездчатый ганглий иннервирует позвоночную артерию, органы грудной полости (пищевод, трахею, вилочковую железу, аорту) и сердечную мышцу.

В грудном отделе имеется 10—12 ганглиев. Постганглионарные ветви первых пяти из них направляются к плевре, сердечному, легочному и аортальному сплетениям. Узлы с 6-го по 9-й образуют большой чревный нерв, который, пройдя в брюшную полость, оканчивается в превертебральных узлах самого крупного нервного сплетения брюшной полости — чревного или солнечного сплетения. В его состав входят как симпатические, так и парасимпатические волокна. От чревного сплетения радиально отходит множество нервов, образующих вторичные сплетения (отсюда и название — солнечное сплетение). В узлах солнечного сплетения оканчиваются волокна многих внутренностных нервов. От узлов этого сплетения берут начало постганглионарные нервы, иннервирующие почти все органы брюшной полости. Последние 2—3 узла грудного отдела своими ветвями формируют малый чревный нерв, который также уходит к узлам солнечного сплетения.

В брюшной части пограничного симпатического ствола имеется 4—5 поясничных узла, от которых идут ветви к брюшной части аорты, половым органам, брыжеечному ганглию, кишечнику. В тазовой части симпатического ствола лежат 4 крестцовых узла и один непарный копчиковый узел. Через тазовое сплетение они иннервируют тазовые органы.

Симпатические афферентные (чувствительные) волокна от внутренних органов, несущие информацию от многочисленных интерорецепторов, идут в составе симпатических нервов и вступают в спинной мозг по его задним корешкам, как и чувствительные соматические афференты.

Окончания симпатических волокон выделяют в качестве медиатора норадренилин и адреналин.

Симпатический отдел вегетативной нервной системы увеличивает свою активность при необходимости мобилизации ресурсов организма. Под действием импульсов, приходящих по симпатическим нервам, увеличивается частота и сила сердечных сокращений, сужается просвет кровеносных сосудов, повышается кровяное давление, тормозится двигательная и секреторная активность пищеварительной системы.

Высшим центром, согласующим работу соматических и вегетативных функций, является кора больших полушарий. В ней имеются проекции как парасимпатических, так и симпатических нервов. Чувствительные пути вегетативных органов проецируются в лимбическую и ростральные части коры (орбитальная, двигательная зоны). Эти проекции строятся на топическом принципе — рядом расположенные органы проецируются в соседние зоны коры. Парасимпатические и симпатические проекции одних и тех же органов проецируются в одни и те же или близко расположенные участки коры. Однако парасимпатические проекции в коре представлены гораздо шире, чем симпатические.

Филогенез. Выделение вегетативной нервной системы из общей структуры ЦНС начинается уже у беспозвоночных. У кольчатых червей из клеток подглоточных узлов выделяются самостоятельные ганглии, связанные с кишечной трубкой. Разделение вегетативной нервной системы на симпатическую и парасимпатическую наблюдается уже у насекомых.

Низшие позвоночные (круглоротые) имеют блуждающий нерв и висцеральные (вегетативные) ветви спинномозговых нервов, однако цепочки симпатических ганглиев у них не наблюдается. Большая часть окончаний блуждающего нерва являются чувствительными. У низших рыб появляются сегментарные ганглии, связанные со спинномозговыми нервами и иннервирующие внутренние органы. Начиная с костистых рыб появляются продольные связи между ганглиями и образуется характерный для высших позвоночных парный пограничный симпатический ствол.

В различных группах позвоночных существуют свои особенности строения вегетативной нервной системы. У млекопитающих ярко проявляется тенденция к слиянию симпатических ганглиев. Клетки ганглиев периферических отделов вегетативной нервной системы возникают из ганглиозной пластинки. В процессе эмбрионального развития эти клетки перемещаются по ходу соответствующих нервов на периферию. В симпатическом отделе они перемещаются по ходу спинномозговых нервов, в парасимпатическом — по ходу блуждающего и тазового нервов. Покинув спинной мозг, симпатические нейроны располагаются двумя тяжами вдоль развивающегося позвоночника, образуя пограничные симпатические стволы. Некоторые из них мигрируют дальше, образуя превертебральные ганглии. Формирование периферических ганглиев значительно отстает от формирования структур центральной нервной системы.

Онтогенез. В онтогенезе парасимпатическая нервная система возникает раньше, чем симпатическая. Сначала наблюдается формирование чувствительных ганглиев и миграция нервных элементов на периферию по их нервам. Так, в сердце, на стадии зародыша 7, 5—11 мм, уже существует интрамуральное парасимпатическое сплетение, в то время как симпатические волокна прорастают к нему на стадии 17—23 мм.

На стадии 9-15 мм у зародыша наблюдается две пары параллельно идущих тяжей — закладки пограничных симпатических стволов, и лежащие вентральнее их закладки превертебральных сплетений брюшной полости. У зародыша 19 мм формируется шейное сплетение и симпатический ствол. С окончанием плодного периода симпатическая нервная система не заканчивает своего формирования. До трехлетнего возраста происходит интенсивный рост клеток, увеличение диаметра нервных волокон, увеличение размеров ганглиев.

(парасимпатический)

Центральные структуры парасимпатического отдела вегетативной нервной системы расположены в стволе мозга (средний мозг,

Варолиев мост и продолговатый мозг) и в крестцовом отделе спинного мозга.

Периферические части образованы эктрамуральными и интрамуральными ганглиями и нервами.

Из среднего мозга парасимпатические ветви уходят в составе глазодвигательного нерва (III пара). Затем преганглионарные волокна направляются к ресничному экстрамуральному ганглию глазницы. Постганглионарные волокна этого ганглия иннервируют гладкую мускулатуру ресничного тела и кольцевых мышц зрачка, т.е. являются двигательными.

Варолиев мост покидается парасимпатическими волокнами в составе лицевого нерва (VII пара). На периферии они образуют преганглионарные веточки нескольких экстрамуральных узлов, иннервирующих железы слизистой оболочки носа и нёба, слезные железы, подчелюстную и подъязычную слюнные железы. Таким образом, парасимпатические веточки лицевого нерва являются секреторными.

Из продолговатого мозга в составе языкоглоточного нерва (IX пара) уходят также секреторные парасимпатическое ветви, которые направляются к ушному экстрамуральному ганглию, иннервирующему околоушные слюнные железы и железы слизистой щек и губ.

Блуждающий нерв (X пара) является самой значительной частью парасимпатического отдела вегетативной нервной системы. Его ветви направляются к сердечному, бронхиальному и чревному сплетениям, а также к интрамуральным узлам в стенках внутренних органов грудной, брюшной полостей и полости большого таза.

Парасимпатические ветви крестцовой части спинного мозга берут начало в боковых рогах серого вещества второго—четвертого крестцовых сегментов и направляются к превертебральным ганглиям нижнего подчревного сплетения и интрамуральным ганглиям органов малого таза (см. рис. 19).

Окончаниями парасимпатического отдела вегетативной нервной системы выделяется медиатор ацетилхолин.

Парасимпатический отдел вегетативной нервной системы регулирует работу внутренних органов в условиях покоя. Его активация способствует снижению частоты и силы сердечных сокращений, снижению кровяного давления, увеличению как двигательной, так и секреторной активности пищеварительного тракта.

 

18) (Мышечный тонус, механизмы регуляции. Роль различных отделов центральной нервной системы в регуляции тонуса мышц)

Мышечный тонус - легкое напряжение мышц в отсутствии нагрузки, при котором она выглядит плотной.

Скелетные мышцы всегда находятся в состоянии некоторого напряжения. Постоянное незначительное напряжение мышц, не сопровождающееся признаками утомления, называется мышечным тонусом. Односторонняя перерезка у спинальной лягушки, подвешенной на крючке штатива, чувствительных (задних) корешков спинного мозга, в которых проходят афферентные нервные волокна, иннервирующие соответствующую заднюю лапку, приводит к исчезновению мышечного тонуса этой лапки и она распрямляется. К аналогичному эффекту приводит перерезка передних (двигательных) корешков или разрушение спинного мозга. Эти опыты свидетельствуют о том, что при разрушении основных звеньев рефлекторного кольца (афферентных и эфферентных путей, нервных центров) мышечный тонус исчезает. Следовательно, мышечный тонус имеет рефлекторную природу.

Источником возбуждений, поддерживающих мышечный тонус, являются проприорецепторы. В скелетных мышцах имеются три вида проприорецепторов:

• мышечные веретена, расположенные среди мышечных волокон;

• сухожильные рецепторы Гольджи, расположенные в сухожилиях;

• пачиниевы тельца, расположенные в фасциях, сухожилиях, связках.

Особое значение в регуляции мышечного тонуса имеют мышечные веретена и сухожильные рецепторы Гольджи.

Мышечные веретена представляют собой небольшие продолговатые образования, напоминающие своим внешним видом прядильные капсулы мышечного веретена находится пучок мышечных волокон, которые называются интрафузальными, т. к. они расположенными внутри веретена в отличие от обычных мышечных волокон, которые называются зкстрафузальными.

Каждое интрафузальное волокно состоит из трех частей:

• его центральная часть называется ядерной сумкой, в которой находятся ядра мышечной клетки;

• два периферических участка, которые имеют поперечную исчерченность и обладают способностью сокращаться;

• миотрубки, расположенные между ядерной сумкой и периферическими участками.

Ядерную сумку в виде спирали окружают нервные волокна чувствительного нейрона- первичные рецепторные окончания. В области миотрубок нервные окончания афферентных нейронов гроздевидно ветвятся, образуя вторичные рецепторные окончания.

В мышце мышечное веретено одним концом прикрепляется к экстрафузальному мышечному волокну, а другим - к сухожилию этого волокна. Таким образом, мышечное веретено расположено в мышце параллельно экстрафузальным мышечным волокнам

При снижении тонуса экстрафузального волокна увеличивается его длина, что приводит к растяжению и раздражению первичных и вторичных рецепторных окончаний, для которых растяжение является адекватным раздражителем.

Возбуждение от рецепторных окончаний по афферентным волокнам поступает в спинной мозг к мотонейронам, расположенным в передних рогах. Мотонейроны спинного мозга принято подразделять на альфа- и гамма-мотонейроны (так как их аксоны относятся к А-альфа и А-гамма нервным волокнам). Возбуждение от альфа-мотонейронов поступает к экстрафузальным мышечным волокнам, вызывая их сокращение - тонус восстанавливается. Избыточное сокращение экстрафузальных мышечных волокон приводит к растяжению сухожильных рецепторов Гольджи, так как они прикрепляются к мышце последовательно. В них возникает возбуждение, которое поступает к тормозным вставочным нейронам спинного мозга, а от них к альфа-мотонейронам. Активность альфа-мотонейронов при этом снижается, уменьшается импульсация, идущая от них к экстрафузальным мышечным волокнам, тонус несколько снижается.

Высокая возбудимость мышечного веретена поддерживается за счет специального механизма, который образован сократительными элементами, расположенными в периферических участках интрафузальных волокон по обе стороны от ядерной сумки. Сокращение этих участков вызывает растяжение ядерной сумки и миотрубок, что приводит к возбуждению рецепторных окончаний и увеличению потока афферентных возбуждений к альфа-мотонейронам. Степень сокращения сократительных элементов интрафузальных волокон регулируется гамма-мотонейронами спинного мозга. Импульсы, приходящие по гамма-афферентным волокнам, вызывают сокращение периферических участков интрафузальных волокон.

Рассмотренные выше механизмы поддержания мышечного тонуса осуществляются на уровне спинного мозга, поэтому такой тонус называется спинальным или простейшим. Спинальный тонус характеризуется очень слабой выраженностью тонического напряжения. Такой тонус не может обеспечить поддержание позы животного и акт ходьбы, но он достаточен для осуществления простейших спинальных рефлексов.

Перерезка у животного (например, у кошки) ствола мозга между передними и задними буграми четверохолмия (операция перерезки ствола мозга называется децеребрацией) вызывает особое состояние скелетной мускулатуры, которое называется децеребрационной ригидностью или контрактильным тонусом. Это состояние характеризуется резким повышением тонуса разгибательной мускулатуры. Конечности такого животного сильно вытянуты, голова запрокинута, спина выгнута. Это состояние называется опистотонусом. Необходимо приложить большое усилие, чтобы согнуть у такого животного конечность в суставе.

Контрактильный тонус имеет рефлекторную природу. Это доказывается тем, что при перерезке передних или задних корешков спинного мозга, иннервирующих конечность, ригидность мускулатуры этой конечности исчезает.

Важную роль в возникновении контрактильного тонуса играет дорсальное вестибулярное ядро продолговатого мозга (ядро Дейтерса), которое возбуждается импульсами от рецепторов вестибулярного аппарата. При раздражении вестибулярного ядра ригидность усиливается, а при его разрушении ригидность уменьшается. Полагают, что это ядро оказывает влияние на ретикулярную формацию продолговатого мозга, которая оказывает неодинаковое влияние на нейроны спинного мозга. Раздражение медиальных отделов ретикулярной формации приводит к торможению рефлексов спинного мозга (тормозящая ретикуло-спинальная система), а раздражение латеральных отделов вызывает активацию нейронов спинного мозга (облегчающая ретикуло-спинальная система).

Ядро Дейтерса продолговатого мозга оказывает активирующее влияние на облегчающую ретикуло-спинальную систему и угнетает тормозную ретикуло-спинальную систему. Активность вестибулярного ядра тормозится красным ядром среднего мозга. При децеребрации происходит разобщение красного и вестибулярного ядер, в результате чего снижается тормозящее влияние красного ядра на вестибулярное ядро. В этих условиях оно оказывает сильное активирующее влияние на облегчающую ретикуло-спинальную систему. Поток импульсов от нее поступает в спинной мозг к гамма-мотонейронам, а от них к сократительным участкам интрафузальных волокон. Сокращение этих участков вызывает раздражение проприорецепторов. Поток возбуждений от них поступает к альфа-мотонейронам спинного мозга, а от них - к экстрафузальным мышечным волокнам, вызывая резкое увеличение их тонуса.

Разрушение красного ядра у интактного животного приводит к развитию гипертонуса мышц-разгибателей, а при его раздражении - к снижению тонуса.

Обнаружены и прямые связи красного ядра и ядра Дейтерса с мотонейронами спинного мозга. Показано, что ядро Дейтерса тормозит мотонейроны мышц-сгибателей и возбуждает мотонейроны мышц-разгибателей. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели. Следовательно, при децеребрации, когда красное ядро отделено от ядра Дейтерса, создаются все условия для повышения тонуса мышц-разгибателей.

На ядро Дейтерса тормозное влияние оказывает и мозжечок. Удаление червячной зоны мозжечка у животного, находящегося в состоянии децеребрационной ригидности, вызывает большее растормаживание ядра Дейтерса и дальнейшее увеличение тонуса разгибателей. Электрическое раздражение червячной зоны, напротив, приводит к уменьшению тонуса этих мышц за счет активации тормозных влияний мозжечка на ядро Дейтерса.

При перерезке головного мозга выше промежуточного мозга у животного возникает особое изменение тонуса - мышцы становятся пластичными (воскоподобными), при этом конечностям можно легко придать любое положение, которое они могут сохранять длительное время. Такое состояние называется пластическим тонусом или восковой ригидностью. Пластический тонус имеет рефлекторное происхождение: после перерезки чувствительных нервов, иннервирующих конечность, все проявления пластического тонуса на этой конечности исчезают.

В возникновении пластического тонуса определенную роль играет черная субстанция среднего мозга. Черная субстанция функционально связана с базальными ганглиями - бледным шаром и полосатым телом. Нейроны черной субстанции синтезируют медиатор дофамин. Аксоны этих нейронов подходят к полосатому телу, которое также содержит дофамин. Повреждение черной субстанции, вызывающее дегенерацию дофаминергических путей к полосатому телу, сопровождаетеся заболеванием - болезнью Паркинсона. Одним из симптомов этой болезни является восковидная ригидность, которая обусловлена, по-видимому, гиперактивностью базальных ганглиев, возникающей при повреждении дофаминергического (вероятно, тормозного) пути, идущего от черной субстанции к полосатому телу.

Кроме того, черная субстанция, по-видимому, оказывает на скелетные мышцы трофическое влияние, подобно симпатической нервной системе. При перерезке выше промежуточного мозга высвобождаются структуры, которые оказывают на черную субстанцию тормозящее влияние. В таких условиях черная субстанция затормаживается и перестает оказывать достаточное трофическое влияние на скелетные мышцы и они становятся пластичными.

Пластический тонус может возникнуть не только при перерезке мозга, но и, например, при отравлении некоторыми ядами, при заболевании нервной системы, а также под влиянием гипноза. У человека пластический тонус может проявляться при особом состоянии нервной системы, которое называется каталепсией или восковой ригидностью. Человек в таком состоянии на некоторое время как бы цепенеет, причем, в неестественной позе и не меняет ее в течение долгого времени.

Большое значение в регуляции мышечного тонуса имеют базальные ядра - бледный шар и полосатое тело, которые образуют стриопаллидарную систему. Эти структуры регулируют активность всех нижележащих отделов ЦНС, участвующих в регуляции мышечного тонуса, обеспечивая адекватное перераспределение тонуса мышц при различных видах деятельности. При поражении экстрапирамидной системы, составной частью которой являются базальные ядра, возникают нарушения регуляций тонуса мускулатуры, что приводит к развитию так называемых дрожательных параличей (паркинсонизму, атетозу, хорее и др.).

Главную роль в приспособительной регуляции мышечного тонуса выполняет кора головного мозга. С ее участием и участием других структур, регулирующих мышечный тонус, формируется нормальный или корковый тонус.

Регуляция тонуса скелетной мускулатуры осуществляется экстрапирамидной системой головного мозга. Быстрые (фазные) движения обеспечиваются активностью пирамидной системы.

В условиях целого организма пирамидная и экстрапирамидная системы включаются как единое целое в функциональную архитектуру приспособительных актов, обеспечивая необходимые фазные движения и адекватные изменения мышечного тонуса. Специфическое изменение тонуса мышц возникает при осуществлении статических и стато-кинетических рефлексов, направленных на поддержание позы.

Статические рефлексы делятся на рефлексы положения и рефлексы выпрямления. Рефлексы положения обеспечивают формирование тонуса мышц, необходимого для поддержания естественного положения тела в пространстве в состоянии покоя. Рефлексы выпрямления определяют перераспределение тонуса мышц, приводящее к восстановлению естественной для данного вида животного позы в случае ее изменения.

Стато-кинетические рефлексы направлены на сохранение позы в пространстве при ускорениях прямолинейного и вращательного характера. Эти рефлексы проявляются при вращении, перемещении тела в горизонтальной и вертикальной плоскостях. Они возникают, в основном, в результате возбуждения рецепторов вестибулярного аппарата. Так, при вращательном движении наблюдается нистагм головы: вначале голова медленно поворачивается в сторону, противоположную направлению вращения, а затем быстро возвращается в. исходное положение. Такое же движения глазных яблок при вращении называется нистагмом глаз.

Перераспределение тонуса мышц шеи, туловища и конечностей происходит при быстром подъеме и спуске. Быстрый подъем сопровождается повышением тонуса сгибателей, а быстрый спуск - разгибателей конечностей. Эти рефлекторные реакции легко наблюдать при перемещении в скоростном лифте, поэтому они и называются лифтными рефлексами.

19) (Корковый отдел анализаторов, особенности его структуры и функции)

(Свойства)

1. Каждая сенсорная система (каждый анализатор) имеет проекцию в кору больших полушарий. Корковый отдел анализаторов имеет центральную часть и окружающую ее ассоциативную зону (по представлению И. П. Павлова — “ ядро” и рассеянные элементы). Центральная часть коркового отдела анализатора состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Ассоциативные корковые зоны представлены менее дифференцированными нейронами, способных к выполнению простейших функций. Синтез и анализ афферентных импульсов этими клетками осуществляется в элементарной, примитивной форме.

 

2. Одной из общих черт организации сенсорных систем является принцип двойственной проекции их в кору больших полушарий. Этот принцип тесно связан с многоканальностью проводящих путей и выражается в осуществлении двух различных типов корковых проекций, которые можно разделить на первичные и вторичные проекции. Первичные и вторичные проекционные зоны окружены ассоциативными корковыми зонами той же сенсорной системы. Примером двойственной проекции в коре головного мозга может служить представительство вкусового анализатора. Его первичная корковая проекция представлена, по- видимому, орбитальной областью коры, так как именно здесь при раздражении рецепторов языка вызванные ответы возникают с самым коротким латентным периодом и имеют самую высокую амплитуду. Вторичной проекционной областью коры вкусового анализатора является соматосенсорная область. Здесь вызванные ответы возникают значительно позже, чем в орбитальной области, и амплитуда их меньше.

 

3. Взаимодействие анализаторов на корковом уровне осуществляется за счет ассоциативных корковых зон и за счет наличия полимодальных нейронов.

 

Взаимодействие анализаторов. Деятельность одних анализаторов находится в зависимости от деятельности других, причем, может наблюдаться как усиление деятельности анализатора, так и ее ослабление.

 

Взаимодействие анализаторов осуществляется на различных уровнях — спинальном, ретикулярном и таламо- кортикальном. Особенно широкая интеграция сигналов наблюдается в нейронах ретикулярной формации. Интеграция сигналов высшего порядка осуществляется на корковом уровне. В результате множественных связей с нижележащими уровнями анализаторов и неспецифических систем многие нейроны коры приобретают способность отвечать на сложные комбинации сигналов различной природы. Это особенно свойственно клеткам ассоциативных областей, а также моторной зоне коры больших полушарий. Пирамидные клетки этой области коры являются общим конечным путем слуховых, зрительных, тактильных и других сигналов.

20) (Зрительный анализатор. Структурно-функциональные особенности рецепторного аппарата. Восприятие цветов.)

 

Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают в затылочную область — мозговой отдел анализатора. В нейронах затылочной области коры большого мозга возникают многообразные и различные зрительные ощущения.

Глаз состоит из глазного яблока и вспомогательного аппарата. Стенку глазного яблока образуют три оболочки: роговица, склера, или белочная, и сосудистая. Внутренняя (сосудистая) оболочка состоит из сетчатки, на которой расположены фоторецепторы (палочки и колбочки), и ее кровеносных сосудов.

В состав глаза входят рецепторный аппарат, находящийся в сетчатке, и оптическая система. Оптическая система глаза представлена передней и задней поверхностью роговой оболочки, хрусталиком и стекловидным телом. Для ясного видения предмета необходимо, чтобы лучи от всех его точек падали на сетчатку.Приспособление глаза к ясному видению разноудаленных предметов называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. Рефракция – преломление света в оптических средах глаза.

Существуют две главные аномалии преломления лучей в глазу: дальнозоркость и близорукость.

Поле зрения — угловое пространство, видимое глазом при фиксированном взгляде и неподвижной голове.

На сетчатке расположены фоторецепторы: палочки (с пигментом родопсин) и колбочки (с пигментом йодопсин). Колбочки обеспечивают дневное зрение и восприятие цвета, палочки – сумеречное, ночное зрение.

Человек обладает способностью различать большое количество цветов. Механизм цветовосприятия по общепринятой, но уже устаревшей трехкомпонентной теории заключается в том, что в зрительной системе имеются три датчика, чувствительных к трем основным цветам: красному, желтому и синему. Поэтому нормальное цветовосприятие называется трихромазией. При определенном смешении трех основных цветов возникает ощущение белого цвета. При нарушении работы одного или двух датчиков основных цветов правильного смешения цветов не наблюдается и возникают нарушения цветовосприятия.

Различают врожденную и приобретенную формы цветоаномалии. При врожденной цветоаномалии чаще наблюдается снижение чувствительности к синему цвету, а при приобретенной — к зеленому. Цветоаномалия Дальтона (дальтонизм) заключается в снижении чувствительности к оттенкам красного и зеленого цветов. Этим заболеванием страдают около 10 % мужчин и 0,5 % женщин.

Процесс восприятия цвета не ограничивается реакцией сетчатки, а существенно зависит от обработки полученных сигналов мозгом.

 

21) (Рефракция глаза, ее аномалии. Физиологические механизмы аккомодации глаза)

 

Рефракция (физическая рефракция) — преломляющая сила оптической системы глаза, которая измеряется условной единицей — диоптрией. За одну диоптрию принята преломляющая сила стекла с главным фокусным расстоянием в 1 м. Диоптрия — величина, обратная главному фокусному расстоянию. Средняя преломляющая сила нормального глаза может варьировать в пределах от 52,0 до 68,0 D.

В офтальмологии важна не рефракция оптической системы глаза, а ее способность фокусировать лучи на сетчатке. Поэтому используется понятие клиническая рефракция, т.е. положение заднего главного фокуса оптической системы глаза по отношению к сетчатке.

(аномалии)

У большинства людей глаз имеет шарообразную форму, максимально приспособленную для того, чтобы световые лучи фокусировались на сетчатке при любой преломляющей силе хрусталика, изменяющейся в процессе аккомодации. При нормальной рефракции на сетчатке одинаково четко проецируются изображения далеких и близких предметов, а проявление такой универсальной рефракционной способности определяют термином эмметропия. Аномалии рефракции возникают при изменениях формы глаза, проявляющихся в удлинении его оптической оси (близорукость, или миопия) или в ее укорочении (дальнозоркость, или гиперметропия). При удлиненной форме глаза, характерной для миопии, обычная преломляющая способность его оптической системы оказывается избыточной, в связи с чем изображение фокусируется перед сетчаткой и субъективно воспринимается нечетким. Дефект зрительного восприятия ощущается только при рассматривании удаленных предметов, тогда как световые лучи, отраженные от близко находящихся предметов, фокусируются точно на сетчатке благодаря ограничению механизма аккомодации. Например, при чтении близоруким людям нужна меньшая, чем людям с нормальной рефракцией, преломляющая сила хрусталика, поэтому нагрузка на ресничные мышцы у них снижается. Но для ясного видения далеких предметов близорукому человеку приходится носить очки с двояковогнутыми рассеивающими линзами, уменьшающими преломление световых лучей. При характерной для гиперметропии укороченной оптической оси глаза световые лучи фокусируются за сетчаткой, что принуждает ресничные мышцы к сокращению даже при рассмотрении далеких предметов. Для компенсации этой аномалии рефракции необходимы очки с двояковыпуклыми линзами, преломляющими световые лучи так, чтобы они фокусировались на сетчатке.

Наибольшей преломляющей способностью в оптической системе глаза обладает роговица (около 48,8 диоптрий), которая не участвует в аккомодации. Поверхность роговицы не идеально сферична почти у всех людей, ее кривизна по вертикали выражена больше, чем по горизонтали. При значительном отклонении формы роговицы от идеальной пропорции возникает аномалия рефракции, которая определяется как астигматизм. В результате такой аномалии световые лучи, отраженные от наблюдаемых объектов, преломляются не одинаково, поэтому часть лучей фокусируется на сетчатке, а остальные — за ее пределами, что ведет к искажению зрительного восприятия. Для исправления этого дефекта применяются индивидуально подобранные линзы очков с различной кривизной по вертикальному и горизонтальному меридианам.

(аккомодация)

Аккомодация — изменение преломляющей силы глаза или способность глаза фокусировать на сетчатке световые лучи, отраженные от рассматриваемых предметов, вне зависимости от расстояния между глазом и этими предметами, т.е. видеть хорошо и вдаль, и вблизи. Аккомодация приспосабливает глаз четко различать предметы, располагающиеся между ближайшей и дальнейшей точками ясного видения. То минимальное расстояние от глаза, на котором глаз еще может отчетливо различать предмет, принято называть ближайшей точкой ясного видения. Дальнейшая точка определяется наибольшим расстоянием, на котором ясно различим предмет при отсутствии аккомодации.

Механизм аккомодации. Решающая роль принадлежит хрусталику и цилиарной мышце. Во время покоя цилиарной мышцы зонулярные волокна натянуты. Она связана, с одной стороны, с цилиарным телом, а с другой — с сумкой хрусталика и оказывает на последнюю некоторое давление, не позволяя ему принять более выпуклую форму. При сокращении аккомодационной мышцы расслабляются зонулярные волокна, уменьшаются силы, натягивающие капсулу хрусталика, и вследствие эластичности своих волокон он становится более выпуклым. Преломляющая сила глаза увеличивается, и изображение близкого предмета на сетчатке становится четким.
Абсолютная и относительная аккомодация. Аккомодация, определяемая для одного глаза, называется абсолютной. Если зрение осуществляется двумя глазами (бинокулярно), то акт аккомодации обязательно сопровождается конвергенцией, т.е. сведением зрительных осей глаз на фиксируемом предмете (относительная аккомодация). Аккомодация и конвергенция у человека, имеющего эмметропию, обычно совершается параллельно и согласованно. Объем относительной аккомодации всегда несколько меньше абсолютного ее объема. Если запас аккомодации мал, то во время работы быстро возникает явление усталости — зрительное утомление.
Причины нарушения аккомодационной способности. С возрастом аккомодационная способность глаза ослабевает. Это может быть обусловлено изменением физико-химического состава хрусталика, обеднением его водой, уплотнением, особенно в области ядра, потерей эластичности. Вследствие этого от глаза постепенно отдаляется ближайшая точка ясного видения.
После 40 лет эта точка находится уже на довольно большом расстоянии, и поэтому для рассматривания мелких предметов их приходится не приближать, а отодвигать от глаза все дальше и дальше. Возникает пресбиопия, т.е. старческая дальнозоркость. Лицам с пресбиопией для зрительной работы на близком расстоянии необходима очковая коррекция.

 


Дата добавления: 2015-12-15 | Просмотры: 597 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.019 сек.)