Размножение прокариот
Бесполое (вегетативное) размножение прокариот происходит путем деления клеток, которое называется дроблением. У некоторых прокариот (актиномицеты) бесполое размножение происходит с помощью спор (конидий).
При размножении бактерий в искусственных условиях (в ограниченном объеме питательной среды) в развитии культуры выделяется 4 периода, или фазы.
1 фаза – лаг-фаза. Численность бактерий увеличивается очень медленно (иногда даже снижается). Бактерии как бы осваивают новую среду.
2 фаза – фаза экспоненциального роста. Численность бактерий увеличивается лавинообразно, в геометрической прогрессии.
3 фаза – стационарная фаза. Численность бактерий стабилизируется.
4 фаза – фаза отмирания. Численность бактерий начинает уменьшаться и вскоре активных бактерий не остается. Наличие стационарной фазы и фазы отмирания связано с уменьшением концентрации питательных веществ и накоплением вредных продуктов обмена.
У некоторых видов известен половой процесс (конъюгация). При конъюгации одна из клеток передает генетическую информацию другой клетке. При этом увеличения числа особей не происходит. Перенос генетической информации может происходить с помощью вирусов (трансдукция) или путем прямого переноса ДНК через мембрану (трансформация).
2. Геномика прокариот
(на примере кишечной палочки Escherichia coli)
Основу генома кишечной палочки составляют кольцевые молекулы ДНК: прокариотические хромосомы и плазмиды.
Множество молекул ДНК образует две взаимосвязанные подсистемы: хромосомную и плазмидную.
Хромосомная подсистема прокариотического генома
Основу хромосомной подсистемы прокариотического генома составляет прокариотическая (бактериальная) хромосома (генофор), входящая в состав нуклеоида – ядерноподобной структуры. Нуклеоид по морфологии напоминает соцветие цветной капусты и занимает примерно 30% объема цитоплазмы.
Бактериальная хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название сайта OriC). Бактериальная хромосома удваивается перед делением клетки. Репликация ДНК идет в две стороны от сайта OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны.
В прокариотических хромосомах число сайтов OriC может быть увеличено, например, у сенной палочки Bacillus subtilis их не менее двух.
Длина прокариотической хромосомы составляет несколько миллионов нуклеотидных пар (мпн); например, минимальная длина ДНК прокариотической хромосомы E. coli штамма MG1655 составляет 4639221 пн (физическая длина около 1,5 мм).
У разных прокариот размер генома изменяется от до 0,5 до 6 мпн:
Виды прокариот
| Размер генома (мпн)
| Число генов
| Mycoplasma genitalium
|
|
| Mycoplasma pneumoniae
| 0,816394
|
| Rickettsia prowazekii
| 1,111523
|
| Treponema pallidum
| 1,138011
|
| Thermoplasma acidophilum (архея)
| 1,564905
|
| Methanococcus iannaschii (архея)
| 1,664976
|
| Archaeoglobus radiodurans (архея)
| 2,178400
|
| Bacillus subtilis
| 4,214814
|
| Escherichia coli
| 4,639221
|
| Pseudomonas aeruginosa
| 6,264403
|
|
Примерно 11% ДНК прокариотической хромосомы E. coli представлено «некодирующими» (нетранскрибируемыми) последовательностями. Остальные 89% ДНК транскрибируются или могут транскрибироваться с образованием РНК. Примерно 75% транскрипционных единиц ДНК (участок ДНК от промотора до терминатора) содержит 1 ген (обычно это гены «домашнего хозяйства», то есть гены, необходимые для поддержания жизнедеятельности клетки), остальные 25% представляют собой опероны (геном E.coli содержит 600…700 оперонов).
У типичных прокариот (например, у кишечной палочки) в неделящейся клетке имеется одна бактериальная хромосома. Поэтому прокариоты в целом являются гаплоидами (гаплобионтами).
У гаплоидов каждый ген представлен одним аллелем, поэтому в целом к прокариотам неприменимы понятия «доминантности» и «рецессивности»: любой аллель проявляется в фенотипе, если данный ген экспрессируется (наблюдается моноаллельное наследование).
В лаг-фазе в клетке имеется одна бактериальная хромосома, но в фазе экспоненциального роста ДНК реплицируется быстрее, чем происходит деление клетки; тогда число бактериальных хромосом на клетку увеличивается до 2...4...8. Такое состояние генетического аппарата называется полигаплоидностью.
При делении клетки сестринские копии бактериальной хромосомы равномерно распределяются по дочерним клеткам с помощью мезосомы.
Механизм сегрегации хромосомной подсистемы прокариотического генома обеспечивает полное сохранение объема и качества генетической информации, содержащейся в бактериальной хромосоме. В результате происходит прямое наследование признаков
Например, если в популяции нормальных прокариот (прототрофных, «дикого типа») в одной из клеток возникает мутация, определяющая неспособность синтезировать аминокислоту лейцин, то все потомство (клон, штамм) этой клетки не может существовать на среде, лишенной лейцина (сохраняет ауксотрофность по лейцину).
Из генетически гетерогенной популяции прокариот возможно выделение штаммов (клонов, генетически однородных чистых линий), сохраняющих гаплотип бактериальной хромосомы исходной клетки. В чистых линиях прокариот рекомбинация не происходит. Поэтому невозможно появление новых гаплотипов, новых сочетаний признаков. Например, существуют устойчивые двойные ауксотрофы по биотину и метионину.
В некоторых случаях один и тот же ген прокариотической хромосомы может быть представлен двумя копиями. Такие клетки (гетерогеноты) могут нести доминантные и рецессивные аллели одного гена. Тогда наблюдается диаллельное наследование, например, нормальный аллель прототрофности по лейцину доминирует над мутантным аллелемауксотрофности.
Плазмидная подсистема прокариотического генома
Кроме бактериальной хромосомы в состав генома прокариот входят плазмиды – кольцевые молекулы ДНК длиной в тысячи п.н. Плазмиды такого размера содержат несколько десятков генов. Обычно это «гены роскоши», обеспечивающие устойчивость к антибиотикам, тяжелым металлам, кодирующие специфические токсины, а также гены конъюгации и обмена генетическим материалом с другими особями. Известны также мелкие плазмиды длиной 2...3 тпн, кодирующие не более 2 белков. У многих бактерий открыты мегаплазмиды длиной порядка миллиона пн, то есть немногим меньше бактериальной хромосомы. Существуют плазмиды, представленные одной копией – они реплицируются синхронно с ДНК бактериальной хромосомы. Другие плазмиды могут быть представлены многими копиями, и их репликация происходит независимо от репликации бактериальной хромосомы. Репликация свободных плазмид часто протекает по принципу «катящегося кольца» – с одной кольцевой матрицы ДНК считывается «бесконечная» копия.
Репликация плазмид может быть синхронизирована с репликацией бактериальной хромосомы, но может быть и независимой. Соответственно, распределение плазмид по дочерним клеткам может быть точным или статистическим. Точная сегрегация характерна для крупных малокопийных плазмид, а статистическая сегрегация – для мелких мультикопийных. В последнем случае одна дочерняя клетка получает избыточную (дублированную) генетическую информацию, а другая клетка может вообще утратить некоторые плазмидные гены
Дата добавления: 2015-12-16 | Просмотры: 1038 | Нарушение авторских прав
|