АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Степень сходства (конкордантность) по ряду заболеваний у близнецов

Прочитайте:
  1. I. Средства, применяемые при лечении заболеваний, вызванных патогенными грибами
  2. II. ЛУЧЕВАЯ ДИАГНОСТИКА ЗАБОЛЕВАНИЙ И ПОВРЕЖДЕНИЙ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА.
  3. III ЛУЧЕВАЯ ДИАГНОСТИКА ЗАБОЛЕВАНИЙ БРОНХОЛЁГОЧНОЙ СИСТЕМЫ.
  4. IV. ЛУЧЕВАЯ ДИАГНОСТИКА ЗАБОЛЕВАНИЙ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ.
  5. V. ЛУЧЕВАЯ ДИАГНОСТИКА ЗАБОЛЕВАНИЙ ОРГАНОВ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА.
  6. Анатомо-физиологические сведения о прямой кишке. Классификация заболеваний. Методы обследования больных.
  7. Анатомо-физиологические сведения о щитовидной железе. Классификация заболеваний. Методы исследования щитовидной железы. Профилактика.
  8. Анемия хронических заболеваний
  9. Анемия является одним из самых частых заболеваний крови, встречающихся во время беременности.
  10. Аяты и методы лечения конкретных заболеваний

 

Признаки, контролируемые большим числом генов и зависящие от негенетических факторов Частота (вероятность) появления сходства, % Наследуемость, %
однояйцевые разнояйцевые
Умственная отсталость      
Шизофрения      
Сахарный диабет      
Эпилепсия      
среднее ≈ 70 % ≈ 20 % ≈ 65 %
Преступность (?)     56 %

 


Обращает на себя внимание высокая степень сходства однояйцевых близнецов по таким тяжелым заболеваниям, как шизофрения, эпилепсия, сахарный диабет.

Кроме морфологических признаков, а также тембра голоса, походки, мимики, жестикуляции и т. д. изучают антигенную структуру клеток крови, белки сыворотки, способность ощущать вкус некоторых веществ.

Особый интерес представляет наследование социально значимых признаков: агрессивности, альтруизма, творческих, исследовательских, организаторских способностей. Считается, что социально значимые признаки примерно на 80 % обусловлены генотипом.

Цитогенетические (кариотипические, кариотипические) методы

Цитогенетические методы используются, в первую очередь, при изучении кариотипов отдельных индивидов. Кариотип человека довольно хорошо изучен (рис. 6). Применение дифференциальной окраски позволяет точно идентифицировать все хромосомы. Общее число хромосом в гаплоидном наборе равно 23. Из них 22 хромосомы одинаковы и у мужчин, и у женщин; они называются аутосомы. В диплоидном наборе (2 n =46) каждая аутосома представлена двумя гомологами. Двадцать третья хромосома является половой хромосомой, она может быть представлена или X или Y –хромосомой. Половые хромосомы у женщин представлены двумя X –хромосомами, а у мужчин одной X –хромосомой и одной Y –хромосомой.

Изменение кариотипа, как правило, связано с развитием генетических заболеваний (см. ниже).

Благодаря культивированию клеток человека in vitro можно быстро получить достаточно большой материал для приготовления препаратов. Для кариотипирования обычно используют кратковременную культуру лейкоцитов периферической крови.

Цитогенетические методы используются и для описания интерфазных клеток. Например, по наличию или отсутствию полового хроматина (телец Барра, представляющих собой инактивированные X -хромосомы) можно не только определять пол индивидов, но и выявлять некоторые генетические заболевания, связанные с изменением числа X -хромосом (см. ниже).

 

Картирование хромосом человека.

Для картирования генов чело­века широко используются методы биотехнологии. В частности, методы клеточной инженерии позволяют объединять различные типы клеток. Слияние клеток, принадлежащих к разным биологическим видам, называется соматической гибридизацией. Сущность соматической гибридизации заключается в получении синтетических культур путем слияния протопластов различных видов организмов. Для слияния клеток используют различные физико-химические и биологические методы. После слияния протопластов образуются многоядерные гетерокариотические клетки. В дальнейшем при слиянии ядер образуются синкариотические клетки, содержащие в ядрах хромосомные наборы разных организмов. При делении таких клеток in vitro образуются гибридные клеточные культуры. В настоящее время получены и культивируются клеточные гибриды «человек × мышь», «человек × крыса» и многие другие.

В гибридных клетках, полученных из разных штаммов разных видов, один из родительских геномов постепенно теряет хромосомы. Эти процессы интенсивно протекают, например, в клеточных гибридах между мышью и человеком. Если при этом следить за каким-либо биохимическим маркером (например, определенным ферментом человека) и одновременно проводить цитогенетический контроль, то, в конце концов, можно связать исчезновение хромосомы одновременно с биохимическим признаком. Это означает, что ген, кодирующий этот признак, локализован в данной хромосоме.

Дополнительная информация о локализации генов может быть получена при анализе хромосомных мутаций (делеций).

 

Биохимические методы. Все многообразие биохимических методов делится на две группы.

а). Методы, основанные на выявлении определенных биохимических продуктов, обусловленных действием разных аллелей. Легче всего выявлять аллели по изменению активности ферментов или по изменению какого-либо биохимического признака.

б). Методы, основанные на непосредственном выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза в сочетании с другими методиками (блот-гибридизации, авторадиографии).

Использование биохимических методов позволяет выявить гетерозиготных носителей заболеваний. Например, у гетерозиготных носителей гена фенилкетонурии изменяется уровень фенилаланина в крови.

 


Дата добавления: 2015-12-16 | Просмотры: 414 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)