АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Регуляция активности генов в ходе онтогенеза у эукариот

Прочитайте:
  1. B) подавляют действие других генов
  2. Hfr-клетки. Использование их в картировании бактериальных генов.
  3. I. Клеточный цикл эукариот
  4. Активность генов в раннем развитии
  5. АППАРАТУРА ДЛЯ ОБЛУЧЕНИЯ РЕНТГЕНОВСКИМИ И ГАММА-ЛУЧАМИ
  6. Ауторегуляция органного кровотока
  7. Более прямые подходы к оценке числа рецессивных генов на индивид
  8. В мембранах эукариот
  9. Введение в физиологию. Физиология ЦНС и нервная регуляция функций
  10. Вегетативная нервная система, морфофункциональная организация и функции ее отделов. Вегетативные рефлексы и регуляция висцеральных систем организма.

Клетки различных тканей растений и животных отличаются друг от друга главным образом тем, что в них происходит синтез различных групп белков, что и определяет их структурную и функциональную специфику. Таким образом, проблема ге­нетического контроля индивидуального развития тесно связана с проблемой дифференциальной экспрессии генов. Экспрессия генов зависит от факторов внешней и внутренней среды и, в то же время, находится под контролем генотипа. Например, известны особые гомеозисные гены, контролирующие экспрессию других генов.

Экспрессия генов закономерно изменяется в ходе онтогенеза. В качестве примера рассмотрим изменение структуры гемоглобина у человека. Гемоглобин – тетрамерный белок, в состав которого входят четыре полипептидных цепи и четыре молекулы гема. Каждая молекула гема содержит один атом железа, связывающий одну молекулу кислорода или молекулу углекислого газа. Две полипептидных цепи, входящие в состав одного тетрамера, носят общее название α, а две – общее название β. В целом структура тетрамера описывается формулой α2β2. Однако эта общая формула нуждается в уточнении. Полипептиды типа α представлены двумя подтипами – ζ и а. Оба подтипа кодируются дуплицированными генами, локализованными в 16-й хромосоме, однако гены ζ экспрессируются в раннем эмбриогенезе, а гены α – преимущественно у пло­дов и у взрослых организмов. Полипептиды типа βпредставлены подтипами ε, γ, δ, β. Кодирующие их гены расположены в 11-й хромосоме в указанном порядке, который соответствует порядку их экспрессии: ген ε экспрессируется на ранних стадиях развития эмбрионов, γ – у плода, δ – у новорождённых, β – у взрослых. В целом «взрослый» гемоглобин состоит из четырех цепей (двух цепей α и двух цепей β) и описывается формулой α2β2. Однако экспрессия гена δ у взрослого человека полностью не прекращается, и около 1% β-цепей замещено на гемоглобин δ (детский гемоглобин).

 

Регуляция экспрессии генов в ходе онтогенеза осуществляется на различных уровнях: генном, транскрипционном, посттранскрипционном, трансляционном и посттрансляционном (функциональном).

 

1. Регуляция на генном уровне

1.1. Модификация ДНК (замена мажорных «обычных» азотистых оснований – аденина, гуанина, цитозина и тимина – на минорные «редкие» азотистые основания, обычно на метил-цитозин или метил-гуанин). Доказано, что метилирование цитозина существенно влияет на экспрессию генов. Например, активные гены гемоглобина менее метилированы, чем неактивные.

1.2. Увеличение объема ДНК в клетке путем дифференциальной амплификации ДНК или за счет образования политенных хромосом.

Дифференциальная (избирательная, или селективная) амплификация ДНК, которая заключается в многократном копировании отдельных генов, например, генов рРНК. Это явление наблюдается упрокариот, а также у эукариот, например, в ооцитах многих животных, в частности, у амфибий. Амплификация связана с увеличением объема яйца в сотни и тысячи раз. Чтобы заполнить такой огромный объем клетки рибосомами, гены рДНК сами увеличиваются в числе настолько, что, например, у шпорцевой лягушки по окончании амплификации содержание рДНК почти равно количеству ДНК, заключенному в диплоидном наборе хромосом. Чис­ло ядрышек (органоидов, контролирующих образование рибосом) возрастает с 2 единиц до 1,5 тыс. Амплификация рРНК происходит и при мегаспорогенезе у растений.(Замечательная особенность молекулярного механизма амплификации заключается в том, что он осуществляется по принципу катящегося кольца – как у прокариот. Одна из копий гена рДНК покидает хромосому, превращается в экстрахромосомную копию, затем замыкается в кольцо, из которого как бы вытягивается хвост длиной в несколько десятков микрометров. Затем эта структура вновь циклизуется, образуя большое кольцо, на основе которого формируется ядрышко.)

Другим механизмом увеличения объема ДНК в клетке является образование политенных хромосом, например, в слюнных железах личинок двукрылых насекомых, в клетках зародышевого мешка Покрытосеменных растений. Частичная политения обнаружена и у млекопитающих: происходит многократное удвоение не всей молекулы ДНК, а только некоторых ее участков.

1.3. Различные случаи программированных количественных изменений ДНК. Примером регуляции, обусловленной транспозицией, служит феномен смены фаз (типа жгутиков) у сальмонелл. Действующий в клетках сальмонелл переключатель содержит промотор, который может изменять свою пространственную ориентацию. В одной ориентации промотор обеспечивает транскрипцию гена Н2, кодирующего синтез жгутиков одного типа, с одновременной репрессией гена H1, кодирующего синтез жгутиков другого типа. В противоположной ориентации промотора ген Н2 не экспрессируется, в то время как экспрессия гена H1 становится возможной.

1.4. Сплайсинг ДНК. Регуляция, связанная со сплайсингом ДНК, изучена на примере генов, кодирующих синтез антител.

Известно, что разнообразные чужеродные вещества – антигены, попадающие в наш организм, – связываются особыми белками – антителами, или иммуноглобулинами. Млекопитающие могут продуцировать до миллиона различных антител, которые вырабатываются Т- и В-лимфоцитами иммунной системы. Существует особый раздел генетики – иммуногенетика,– который изучает генетический контроль иммунного ответа. Основу молекул иммуноглобулинов составляет сложный белок, состоящий из четырех полипептидных цепей – двух тяжелых (Н) и двух легких (L), – связанных дисульфиднымимостиками. Оба типа цепей имеют константные (С) и вариабельные (V) участки. Центр связывания антигена образуют вариабельные участки Н- и L-цепей. Механизм объединения константных и вариабельных участков в одной и той же полипептидной цепи подробно изучен. Доказано, что у эмбрионов фрагменты ДНК, кодирующие V- и С-участки, пространственно разделены. При развитии системы иммунитета у позвоночных животных и человека происходит дифференцировка лимфоцитов, в ходе которой гены, кодирующие V- и С-участки, перестраиваются таким образом, что в итоге они оказываются частями одного и того же гена, транскрибируемого как целое. Таким образом, сплайсинг ДНК обеспечивает сшивание консервативных (т.е. постоянно присутствующих) районов этих генов с различными варьирующими. В результате появляется большое число типов антител, поскольку любая консервативная область может быть присоединена к любой варьирующей.

Сплайсинг ДНК можно представить в виде схемы:

 

  L I1 V     J I2 C  

  L I1 V J I2 C  

 

1.5. Диминуция хроматина. У некоторых организмов (у аскарид, циклопов) в соматических клетках происходит необратимая утрата части генетического материала (от 20 до 80% ДНК). В полном объеме исходная генетическая информация сохраняется только в клетках зародышевого пути, т. е. в клетках, которые дадут в дальнейшем начало половым клеткам. Именно гаметы содержат всю полноту генетической информации данного вида и составляют непрерывный, потенциально бессмертный зародышевый путь. Смертны соматические клетки индивидуумов, представляющих собой как бы ответвления от зародышевого пути, возникающие после оплодотворения. А. Вайсман считал диминуцию хроматина универсальным механизмом дифференцировки клеток и тканей, однако в дальнейшем было показано, что этот способ дифференцировки встречается довольно редко. Например, подобное явление наблюдается у инфузорий: в диплоидном микронуклеусе полностью сохраняется исходный набор генов, а в полиплоидном макронуклеусе ~10% генов (правда, за счет полиплоидизации оставшаяся информация многократно дублируется).

 

1.6. Изменение активности целых хромосом.

Известно, что у самок млекопитающих в кариотипе присутствует две X -хромосомы, а у самцов одна X - и одна Y -хромосома. Несмотря на то, что женские особи млекопитающих имеют две Х -хромосомы, а мужские – только одну, экспрессия генов Х -хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у самок в каждой клетке полностью инактивирована одна Х -хромосома. Эту хромосому можно видеть в интерфазе в форме гетерохроматинового тельца, названного тельцем Барра. Х -хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. При этом в разных клетках отцовская и материнская Х -хромосомы выключаются случайно. Состояние инактивации данной Х -хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаи­ки. Широко известный пример проявления такой мозаичности — черепаховые кошки, имеющие черные и желтые пятна. Эти кошки гетерозиготны по гену СYB (CY – желтый мех, СB – черный мех). Желтые и черные пятна у них развиваются в результате случайной инактивации в раннем эмбриогенезе Х -хромосомы с аллелью СB или CY. Черепаховую окраску почти всегда имеют кошки, если же изредка обнаруживаются коты такой окраски, то они имеют хромосомную конституцию XXY.

 

2. Регуляция на уровне транскрипции

Во многих случаях дифференцировка происходит путем регуляции транскрипции мРНК. Интенсивное функционирование отдельных генов или их блоков соответствует определенным этапам развития и дифференцировки.

При изучении гигантских политенных хромосом (в слюнных железах личинок дрозофил) и петель в хромосомах типа «ламповых щеток» (в ооцитах на стадии профазы I) было установлено, что мРНК синтезируется с разной скоростью в разных участках хромосом, в частности, образование пуфов и петель связано с повышением интенсивности синтеза мРНК.

Динамика образования пуфов. В гигантских политенных хромосомах часто наблюдаются вздутия определенных районов хромосом, обусловленные декомпактизацией отдельных дисков и интен­сивным синтезом в них РНК. Эти вздутия называются пуфы (или кольца Бальбиани). Пуфы представляют собой места интенсивного синтеза мРНК. Динамика образования пуфов на гигантских хромосомах в процессе развития двукрылых является отраже­нием смены активности генов. Формирование комплексов пуфов, характерных для клеток отдельных тканей и органов дифференцированного организма, является показателем общего уровня наиболее интенсивно протекающих метаболических процессов в данных клетках. При снижении синтетической активности петли синтезированная мРНК отделяется от хромосомы и пуфы политенных хромосом исчезают.

Установлена роль стероидных гормонов (в частности, экдизона – гормона окукливания) в индукции пуфов, а также роль белков, синтезированных ранними пуфами, в индукции поздних пуфов. Таким образом, стероидные гормоны и белки, вероятно, не единственные факторы, ответствен­ные за переключение генов в онтогенезе, а, следовательно, и за смену фаз индивидуального развития организма. Механизм образования пуфов показан на рис. _____. Доказано, что после введения этого гор­мона молодым личинкам довольно быстро возникают специфиче­ские пуфы, при­чем продолжительность их образования зависит от количества введенного гормона.

Последовательность образования пуфов изменяется также при воздействиях различными химическими агентами или температурными условиями. Некоторые антибиотики, влияющие на обмен РНК (например, актиномицин), подавляют образование пуфов, а антибиотики, ингибирующие синтез белка (например, пуромицин), не влияют на этот процесс. Следовательно, активность пуфов находится под контролем гормональных факторов (закодированных в генотипе) и факторов внешней среды.

Особенно велика роль стероидных гормонов в регуляции генной активности у животных. Известно, что гормоны синтезируются в специализированных клетках желез внутренней секреции и циркулируют по всему организму. Однако отдельные гормоны активируют гены не во всех клетках, а только в клетках-мишенях, которые содержат специальные рецепторные белки, с которыми специфи­чески связываются молекулы гормона. Это связывание происходит в цитоплазме, а затем образовавшийся комп­лекс проникает в ядро, где он взаимодействует с определенными негистоновыми белками хромосом. В отсутствие гормонов эти белки блокируют либо промоторные, либо иные, пока неизвестные регуляторные участки опре­деленных генов. Комплекс «гормон – рецепторный белок» снимает блокирующее действиенегистонового белка-репрессора, следствием чего являются транскрипция данного гена, созревание мРНК, транспорт ее в цитоплазму и синтез белка.

Образование и функционирование хромосом типа «ламповых щеток». Связь синтетической активности с морфологическими преоб­разованиями хромосом была установлена при изучении оогенеза у амфибий, в ходе которого образуются хромосомы типа «ламповых щеток» (рис. _____ в конце лекции). Эти хромосомы получили свое название за сходство со щетками, которыми когда-то чистили керосиновые лампы. Они имеют отчетливо выраженное хромомерное (узелковое) строение. Из хромомеров в виде петель вытянуты ДНК-вые оси хромосом. Поскольку хромосомы типа ламповых щеток существуют вдиплотене и состоят из четырех хроматид, каждый участок таких хромосом представлен четырьмя хромомерами и четырьмя петлями. Окружение петель представляет собой гранулы и фибриллы, состоящие из вновь синтезированной РНК и белков. Таким образом, петли – это участки хромомера с интенсивной транскрипцией. Обычно в них легко различают тонкий конец, где начинает свое движение РНК-полимераза, и толстый конец, где транскрипция заканчивается. При снижении синтетической активности петли синтезированная РНК отделяется от хромосомы и петля спадает.

Число петель близко к числу типов РНК, присутствующих в цитоплазме. Эта РНК частично используется для синтеза рибосом и белков цитоплазмы яйца. Однако большая часть молекул мРНК, синтезированных хромосомами типа ламповых щеток, используется позже во время раннего эмбриогенеза.

Цитохимическое изучение хромосом типа «ламповых щеток» выявило их функциональное сходство с политенными хромосомами.

 

3. Регуляция на посттранскрипционном уровне: модификации (сплайсинг) мРНК

Регуляция на уровне процессинга РНК обес­печивает возможность образования различных типов зрелой, функционально активной мРНК. Процессинг РНК регулируется с помощью рибозимов (катализаторов рибонуклеиновой природы) и ферментов матураз.

Одной из форм сплайсинга является альтернативный сплайсинг, при котором одному участку ДНК и одному первичному транскрипту (пре-мРНК) может соответствовать несколько типов зрелой мРНК и, соответственно, несколько изотипов (т.е. разных форм) одного и того же белка, например, мышечного белка тропонина. Твердо установлено, что некоторые генетические заболевания человека (фенилкетонурия, некоторые гемоглобинопатии) обусловлены нарушением сплайсинга.

Сплайсинг РНК открыт сравнительно недавно, поэтому достоверных данных по регуляции активности генов на этом уровне недостаточно. Наиболее подробно изучена регуляция генов, контролирующих усвоение галактозы у дрожжей. Показано, что эти системы регуляции действуют как на уровне транскрипции, так и на посттранскрипционном уровне. При этом осуществляется многоступенчатая, или каскадная, регуляция, в которой участвуют элементы позитивного и негативного контроля, последовательно регулирующие активность друг друга.

 

4. Регуляция на уровне трансляции

Регуляция на уровне трансляции обусловлена различной активностью разных типов мРНК. Например, у прокариот некоторые мРНК транслируются только в присутствии эритромицина. У эукариотрегуляция генной активности на уровне трансляции хорошо прослежена на примере морского ежа. Его неоплодотворенные яйца содержат большое количество «замаскированной» (нетранслируемой) мРНК. У дрозофилы подобные мРНК, кодирующие белки оболочки яйцеклетки, накапливаются в цитоплазме.

 

5. Регуляция на уровне посттрансляционной модификации белков.

Экспрессия генов на уровне посттрансляционной модификации полипептидов регулируется путем посттрансляционной модификацией белков (фосфорилированием, ацетилированием, расщеплением исходной полипептидной цепи на более мелкие фрагменты и т.д.). Например, белковый гормон инсулин, синтезирующийся в клетках поджелудочной железы, образуется в форме препроинсулина, из которого затем путем отщепления «лишних» пептидов образуется проинсулин. Из проинсулина вырезаются две субъединицы, представляющие собой А- и В-цепи инсулина. Эти две цепи сшиваются между собой с помощью дисульфидных мостиков. Четыре образовавшиеся АВ-структуры соединяются в белковый тетрамер, который присоединяет два иона Zn2+, и в результате образуется зрелый инсулин.

Широко распространен механизм регуляции активности ферментов, основанный на присоединении к ним молекул-эффекторов. Чаще всего в роли эффекторов выступают конечные продукты цепей биосинтеза, которые связываются с первым или с одним из первых ферментов данного метаболического пути и подавляют его активность, тем самым выключая всю цепь синтеза. Это ингибирование конечным продуктом, благодаря которому регулируются сразу несколько этапов метаболизма. Конечный продукт связывается с ферментом не в его активном центре, а в аллостерическом центре, и такое взаимодействие индуцирует изменение (инактивацию) активного центра фермента.

 


1. Изменчивость, ее причины и методы изучения. Классификация форм изменчивости. Фенотипическая изменчивость и ее компоненты. Наследуемость признаков

 

Самовоспроизведение с изменением – это одно из основных свойств жизни. Термин «изменчивость» служит для обозначения различных понятий; как и большинство других терминов, он полисемантичен (многозначен). Юрий Александрович Филипченко различал два основных подхода к определению изменчивости.

1. Изменчивость как состояние. В этом значении термин «изменчивость» служит для обозначения отличий биологических объектов друг от друга в данный момент времени. Всегда существуют различия между частями одного организма, между разными организмами в популяции, между разными внутрипопуляционными группировками, между популяциями.

2. Изменчивость как процесс. В этом значении термин «изменчивость» служит для обозначения изменения биологического объекта во времени. В этом случае изменчивость отражает развитие особи, отличие потомков от родителей.

Любая наблюдаемая изменчивость является фенотипической. В свою очередь, фенотипическая, или общая изменчивость включает три компонента:

Наследственная (генетическая, или генотипическая изменчивость) – в значительной мере обусловлена влиянием генетических факторов. Например, в сходных условиях выращивается несколько сортов одного вида растений. Тогда различия между результатами эксперимента (например, урожайность) обусловлены генетическими особенностями каждого сорта. В основе генетической изменчивости лежит мутационная и комбинативная изменчивость.

Ненаследственная (модификационная) изменчивость – в значительной мере обусловлена действием негенетических (экзогенных) факторов. Например, один сорт растений выращивается в разных условиях. Тогда различия между результатами эксперимента (например, урожайность) обусловлены влиянием условий выращивания растений.

Неконтролируемая (остаточная изменчивость) – обусловлена неконтролируемыми (по крайней мере, в данном эксперименте) факторами.

Для разных признаков влияние генотипа и условий среды на общую фенотипическую изменчивость неодинаково. Например, окраска шерсти, жирномолочность у крупного рогатого скота, масса яиц у кур зависят, в основном, от особенностей породы (т.е. от генотипа) – эти признаки обладают высокой наследуемостью. Другие признаки: качество шерсти, общая удойность у КРС, яйценоскость у кур – зависят, в основном, от условий выращивания и содержания – эти признаки обладают низкой наследуемостью.

2. Мутационная изменчивость. Основные положения мутационной теории. Общие свойства мутаций

 

Термин «мутация» (от лат. mutatio – изменение) долгое время использовался в биологии для обозначения любых скачкообразных изменений. Например, немецкий палеонтолог В. Вааген называл мутацией переход от одних ископаемых форм к другим. Мутацией называли также появление редких признаков, в частности,меланистических форм среди бабочек.

Современные представления о мутациях сложились к началу XX столетия. Например, российский ботаник Сергей Иванович Коржинский в 1899 г. разработал эволюционную теорию гетерогенезиса, основанную на представлениях о ведущей эволюционной роли дискретных (прерывистых) изменений.

Однако наиболее известной стала мутационная теория голландского ботаника Хьюго (Гуго) Де Фриза (1901 г.), который ввел современное, генетическое понятие мутации для обозначения редких вариантов признаков в потомстве родителей, которые не имели этого признака.

 

Де Фриз разработал мутационную теорию на основе наблюдений за широко распространенным сорным растением – ослинником двулетним, или энотерой (Oenothera biennis). У этого растения существует несколько форм: крупноцветковые и мелкоцветковые, карликовые и гигантские. Де Фриз собирал семена с растения определенной формы, высевал их и получал в потомстве 1…2% растений другой формы. В дальнейшем было установлено, что появление редких вариантов признака у энотеры не является мутацией; данный эффект обусловлен особенностями организацией хромосомного аппарата этого растения. Кроме того, редкие варианты признаков могут быть обусловлены редкими сочетаниями аллелей (например, белая окраска оперения у волнистых попугайчиков определяется редким сочетанием aabb).

 

Основные положения мутационной теории Де Фриза остаются справедливыми и по сей день (разумеется, с некоторыми современными уточнениями):

 

  Положения мутационной теории Де Фриза Современные уточнения
  Мутации возникают внезапно, без всяких переходов. существует особый тип мутаций, накапливающихся в течение ряда поколений (прогрессирующая амплификация в интронах).
  Успех в выявлении мутаций зависит от числа проанализированных особей. без изменений
  Мутантные формы вполне устойчивы. при условии 100%-ной пенетрантности (мутантному генотипу соответствует мутантный фенотип) и 100%-ной экспрессивности (одна и та же мутация проявляется у разных особей в равной степени)
  Мутации характеризуются дискретностью (прерывистостью); это качественные изменения, которые не образуют непрерывных рядов, не группируются вокруг среднего типа (моды). существуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта
  Одни и те же мутации могут возникать повторно. это касается генных мутаций; хромосомные аберрации уникальны и неповторимы
  Мутации возникают в разных направлениях, они могут быть вредными и полезными. сами по себе мутации не носят адаптивный характер; только в ходе эволюции, в ходе отбора оценивается «полезность», «нейтральность» или «вредность» мутаций в определенных условиях; при этом «вредность» и «полезность» мутаций зависит от генотипической среды

 

В настоящее время принято следующее определение мутаций:


Дата добавления: 2015-12-16 | Просмотры: 530 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.009 сек.)