АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Общие закономерности мутагенеза
Мутации возникают не мгновенно. Вначале под воздействием мутагенов возникает предмутационное состояние клетки. Различные репарационные системы стремятся устранить это состояние, и тогда мутация не реализуется. Основу репарационных систем составляют различные ферменты, закодированные в генотипе клетки (организма). Таким образом, мутагенез находится под генетическим контролем клетки; это – не физико-химический, а биологический процесс.
Например, ферментные системы репарации вырезают поврежденный участок ДНК, если повреждена только одна нить (эту операцию выполняют ферментыэндонуклеазы), затем вновь достраивается участок ДНК, комплементарный по отношению к сохранившейся нити (эту операцию выполняют ДНК-полимеразы), затем восстановленный участок сшивается с концами нити, оставшимися после вырезания поврежденного участка (эту операцию выполняют лигазы).
Существуют и более тонкие механизмы репарации. Например, при утрате азотистого основания в нуклеотиде происходит его прямое встраивание (это касаетсяаденина и гуанина); метильная группа может просто отщепляться; однонитевые разрывы сшиваются. В некоторых случаях действуют более сложные, малоизученные системы репарации, например, при повреждении обеих нитей ДНК.
Однако при большом числе повреждений ДНК они могут стать необратимыми. Это связано с тем, что: во-первых, репарационные системы могут просто не успевать исправлять повреждения, а во-вторых, могут повреждаться сами ферменты систем репарации, необратимые повреждения ДНК приводят к появлению мутаций – стойких изменений наследственной информации.
Физические мутагены
К физическим мутагенам относятся: ионизирующее излучение (альфа-, бета-, гамма-, нейтронное и рентгеновское излучение), коротковолновое ультрафиолетовое излучение, СВЧ-излучение, действие экстремальных температур.
Действие ионизирующего излучения основано на ионизации компонентов цитоплазмы и ядерного матрикса. При ионизации возникают высокоактивные химические вещества (например, свободные радикалы), которые различным образом действуют на клеточные структуры. Рассмотрим наиболее изученные механизмы мутагенного воздействия ионизирующего излучения.
1. Непосредственное воздействие частиц с высокой энергией на ДНК, которое приводит к ее разрывам: одиночным (под воздействием гамма-квантов, рентгеновских лучей) или множественных (под воздействием альфа-частиц, нейтронного излучения). Это универсальный механизм возникновения хромосомных перестроек на всех стадиях клеточного цикла, но он действует очень грубо – обычно клетки теряют способность к нормальному делению и погибают. К разрывам ДНК приводит и ультрафиолетовое облучение.
2. Опосредованное воздействие ионизирующих факторов связано с нарушением структуры ферментов, контролирующих репликацию, репарацию и рекомбинацию ДНК. Этот механизм наиболее эффективно действует на синтетической стадии интерфазы. При больших дозах мутагенов клетки погибают. (Поскольку раковые клетки делятся непрерывно, то облучение является универсальным средством подавления развития метастазов при онкологических заболеваниях – непрерывно делящиеся раковые клетки более уязвимы, чем медленно пролиферирующие или непролиферирующие нормальные клетки.)
Опосредованное воздействие ионизирующих факторов индуцирует самые разнообразные генные и хромосомные мутации. При опосредованном действии ионизирующих факторов их мутагенный эффект может быть снижен с помощью специальных веществ – радиопротекторов. К радиопротекторам относятся различные антиоксиданты, взаимодействующие с продуктами ионизации. В то же время, мутагенный эффект может быть усилен, например, высокая температура повышает мутагенный эффект радиации.
3. Особенности мутагенного действия ультрафиолетовых лучей. ДНК интенсивно поглощает жесткий ультрафиолет с длиной волны ≈ 254 нм. Основным продуктом является образование нуклеотидных димеров: два нуклеотида, расположенных рядом в одной цепи ДНК, «замыкаются» сами на себя, образуя пары «тимин–тимин» или «тимин–цитозин». При репликации ДНК напротив такой пары в достраивающейся цепи могут стать два любых нуклеотида, т.е. принцип комплементарности не выполняется. Ультрафиолетовый свет – это сравнительно мягкий мутаген, поэтому его широко используют в селекции растений, облучая проростки.
4. Особенности мутагенного действия экстремальных температур. Собственный мутагенный эффект экстремальных температур не доказан. Однако очень низкие или очень высокие температуры нарушают деление клетки (возникают геномные мутации). Экстремальные температуры усиливают действие других мутагенов, поскольку снижают ферментативную активность репарационных систем.
Дата добавления: 2015-12-16 | Просмотры: 592 | Нарушение авторских прав
|