АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Средний мозг.

Прочитайте:
  1. V2: Тема 7.3 Средний мозг. Промежуточный мозг.
  2. Вопрос 82. Головной мозг. Его отделы и желудочки.
  3. Вопрос. Продолговатый мозг, мост, средний мозг, промежуточный мозг, мозжечок. Функции, симптомы поражения.
  4. Какое из отверстий открывается в средний носовой ход?
  5. КОНЕЧНЫЙ МОЗГ. ПОЛУШАРИЯ БОЛЬШОГО МОЗГА. БОРОЗДЫ И ИЗВИЛИНЫ БОЛЬШИХ ПОЛУШАРИЙ
  6. Конечный мозг. Полушария головного мозга: поверхности, доли, бороздки, извилины.
  7. Продолговатый мозг. Строение и функции.
  8. Промежуточный мозг. Базальные ганглии
  9. Реабилитация больных, перенесших нар-ие мозг.кровообр-я.
  10. Режимы и типы сокращений скелетной мышцы. Оптимум и пессимум частоты раздражения скелетной мышцы. Сила и работа мышц. Динамометрия. Закон средний нагрузок.

Средний мозг представлен четверохолмием и ножками мозга. Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации.

Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Сенсорные функции. Реализуются за счет поступления в него зрительной, слуховой информации.

Проводниковая функция. Заключается в том, что через него проходят все восходящие пути к вышележащим таламусу (медиальная петля, спино-таламический путь), большому мозгу и мозжечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. Это пирамидный путь, корково-мостовые волокна, руброретикулоспинальный путь

Двигательная функция. Реализуется за счет ядра блокового нерва (п. trochlearis), ядер глазодвигательного нерва (п. оси-lomotorius), красного ядра (nucleus ruber), черного вещества (substantia nigra).Красные ядра располагаются в верхней части ножек мозга. Они связаны с корой большого мозга (нисходящие от коры пути), подкорковыми ядрами, мозжечком, спинным мозгом (красноядерно-спинномозговой путь). Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к децеребрационной ригидности. Это состояние характеризуется сильным напряжением мышц-разгибателей конечностей, шеи, спины. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребрационная ригидность исчезает. Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся движении и состоянии опорно-двигательного аппарата, посылают корригирующие импульсы к мотонейронам спинного мозга по рубро спинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному движению. Черное вещество — располагается в ножках мозга, регулирует акты жевания, глотания (их последовательность), обеспечивает точные движения пальцев кисти руки, например при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который поставляется аксональным транспортом к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пластического тонуса мышц. Нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубовича) регулируют просвет зрачка и кривизну хрусталика.

Рефлекторные функции. Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние — слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Основная функция бугров четверохолмия — организация реакции настораживания и так называемых стартрефлексов на внезапные, еще не распознанные, зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции. Четверохолмие организует ориентировочные зрительные и слуховые рефлексы. При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Четверохолмия принимают участие в организации произвольных движений.

Работы Магнуса, Клейна и др. показали, что в стволе головного мозга расположена сложная система рефлекторных центров, обеспечивающих сохранение положения организма в пространстве (статические рефлексы), а также двигательные реакции, которыми организм отвечает на активные и пассивные движения и которые компенсируют происходящие при этом смещения (статокинетические рефлексы).
1. Статические рефлексы могут быть разделены на две большие группы: рефлексы, обусловливающие положение тела в покое,— так называемые рефлексы положения, и рефлексы, обусловливающие возвращение из различных положений в исходное, — так называемые рефлексы установки.
Рефлексы положения изучаются на децеребрированных животных, так как децеребрация выключает рефлексы установки, центр которых расположен выше (средний мозг, красные ядра), и позволяет, таким образом, изучать рефлексы положения в изолированном виде. На общее положение тела влияет положение головы. Меняя положение головы, раздражают, во-первых, нервы шейных мышц (тонические шейные рефлексы, изучаемые после предварительного разрушения обоих лабиринтов), а во-вторых, лабиринты (лабиринтные рефлексы, для изучения которых необходима фиксация шеи повязкой, выключающая действие шейных рефлексов). Шейные рефлексы: поворот головы усиливает разгибательный тонус в тех конечностях, в сторону которых голова обращается подбородком, и сгибательный тонус в конечностях противоположной стороны; сгибание головы ведет к усилению сгибательного тонуса, разгибание головы— к усилению разгибательного тонуса. В противоположность шейным рефлексам лабиринтные рефлексы всегда изменяют тонус всех четырех конечностей в одном и том же направлении.
Рефлексы установки обнаруживают животные с сохранившейся областью красных ядер. Децеребрированное животное стоит, если его поставят, падает, если его толкают, и не может самостоятельно вновь подняться на ноги; животное с неповрежденным средним мозгом, наоборот, способно из каждого положения возвратиться к нормальному. В этой установочной функции принимают участие многие рефлексы, исходным пунктом которых являются различные рецепторные органы.
К данной группе рефлексов относятся прежде всего лабиринтные установочные рефлексы.

 

2. Статокинетические рефлексы — рефлексы, вызываемые активными или пассивными движениями. К ним относятся лабиринтные рефлексы, обусловленные вращением тела.
Если животное поместить по радиусу на вращающийся диск так, чтобы голова его была обращена к периферии, то при вращении диска голова и глаза будут отклоняться в обратную вращению сторону (вращательная реакция головы и глаз), по прекращении вращения голова и глаза будут отклоняться в сторону вращения (последовательная вращательная реакция головы и глаз). Помимо вращательных реакций, выделяются еще лабиринтные реакции на простое (некруговое) поступательное движение. В группу статокинетических рефлексов входят также многочисленные реакции на движения отдельных частей тела; вызывающими их рефлексогенными импульсами являются раздражения нервов мышц туловища и конечностей.

86. Мозжечок. Афферентные и эфферентные связи мозжечка. Роль моз­жечка в формировании тонуса мышц и фазных движений, в организации двигательных программ. Участие мозжечка в процессах регуляции вегета­тивных функций (Л.А. Орбели).

 

Мозжечок — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

Особенности мозжечка:1) кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации;2) основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;3) на клетки Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.;4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом. Мозжечок анатомически и функционально делится на старую, древнюю и новую части. К старой части мозжечка — вестибулярный мозжечок — относится клочково-флоккулярная доля. Древняя часть мозжечка — спиннальный мозжечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимушественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов. Новый мозжечок включает в себя кору полушарий мозжечка и участки червя; он получает информацию от коры, преимушественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем. Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга. Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Стимуляция верхнего слоя коры мозжечка приводит к длительному (до 200 мс) торможению активности клеток Пуркинье. В кору мозжечка от кожных рецепторов, мышц, суставных оболочек, надкостницы сигналы поступают по так называемым спинномозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье. Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Аксоны клеток III слоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя. Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую активность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

Мозжечковый контроль двигательной активности. Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разгибанию и наоборот. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами: астения (astenia — слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;астазия (astasia, от греч. а — не, stasia — стояние) — утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение.; дистония (distonia — нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц; тремор (tremor — дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении и др. При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддверного ядра. При повреждении мозжечка вестибулярные ядра бесконтрольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей. При повреждении мозжечка усиливаются и проприоцептивные рефлексы спинного мозга (рефлексы, вызываемые при раздражении рецепторов сухожилий, мышц, надкостницы, оболочек суставов. В норме мозжечок активирует пирамидные нейроны коры большого мозга, которые тормозят активность мотонейронов спинного мозга. Влияние мозжечка на вегетативные функции. Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. При раздражении мозжечка высокое кровяное давление снижается, а исходное низкое — повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной — повышение тонуса дыхательных мышц. Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухудшается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерождению. При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мышечные сокращения, сосудистый тонус, обмен веществ и т. д. реагируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.

87. Ретикулярная формация. Особенности нейронной организации и функций ретику­лярной формации ствола мозга.

Ретикулярная формация (РФ) мозга представлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально связана с РФ спинного мозга. РФ имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, средним, продолговатым и спинным мозгом. Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, таламуса, спинного мозга. Она может избирательно оказывать активирующее или тормозящее влияние на разные формы поведения, на сенсорные, моторные, висцеральные системы мозга. Сетевое строение обеспечивает высокую надежность функционирования РФ, устойчивость к повреждающим воздействиям, так как локальные повреждения всегда компенсируются за счет сохранившихся элементов сети. Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Существуют гигантские нейроны с длинным аксоном, образующие пути из РФ в другие области мозга, например в нисходящем направлении, ретикулоспинальный и руброспинальный. Аксоны нейронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга. Аксоны нейронов РФ, идущие в кору большого мозга, заканчиваются здесь на дендритах I и II слоев.

Активность нейронов РФ различна и в принципе сходна с активностью нейронов других структур мозга, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической активностью, не зависящей от приходящих сигналов.

В то же время в РФ среднего мозга и моста имеются нейроны, которые в покое «молчат», т. е. не генерируют импульсы, но возбуждаются при стимуляции зрительных или слуховых рецепторов. Это так называемые специфические нейроны, обеспечивающие быструю реакцию на внезапные, неопознанные сигналы. В РФ продолговатого, среднего мозга и моста конвергируют сигналы различной сенсорности. Сигналы от зрительной и слуховой сенсорных систем в основном приходят на нейроны РФ среднего мозга. РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет того, что при интенсивном внешнем раздражении нейроны неспецифических ядер таламуса затормаживаются, тем самым снимается их тормозящее влияние с релейных ядер того же таламуса и облегчается передача сенсорной информации в кору большого мозга. В РФ моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное дискомфортное, не всегда четко локализуемое, болевое ощущение «тупой боли». РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зрительного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. Раздражение РФ приводит к тремору, повышению тонуса мышц. РФ ствола мозга участвует в передаче информации от коры большого мозга, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. В регуляции вегетативных функций большое значение имеют так называемые стартовые нейроны РФ. Они дают начало циркуляции возбуждения внутри группы нейронов, обеспечивая тонус регулируемых вегетативных систем. Влияния РФ можно разделить в целом на нисходящие и восходящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие. Восходящие влияния РФ на кору большого мозга повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга, следовательно, она имеет значение в интеграции сенсорной информации от разных анализаторов. РФ имеет прямое отношение к регуляции цикла бодрствование—сон. Возбуждение РФ продолговатого мозга или моста вызывает синхронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение. Возбуждение РФ среднего мозга вызывает противоположный эффект пробуждения: десинхронизацию электрической активности коры, появление быстрых низкоамплитудных р -подобных ритмов в электроэнцефалограмме. Реакция активации коры большого мозга наблюдается при раздражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к возникновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ. РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.

88. Таламус — коллектор афферентных путей. Функциональная характе­ристика ядер таламуса. Таламо-кортикальные и кортико-таламические связи.

Таламус — структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокортикальные пути. Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма в целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер). Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная — в лобную долю коры; латеральная — в теменную, височную, затылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая — в разные области коры большого мозга. Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные. К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов. От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки III—IV слоев коры большого мозга. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса. Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию. В медиальное коленчатое тело (МТК) поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферентные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры.Уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей. Ассоциативные ядра таламуса представлены передним медио-дорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное — с лобной долей коры, латеральное дорсальное — с теменной, подушка — с ассоциативными зонами теменной и височной долями коры большого мозга.

Гипоталамус. Характеристика основных ядерных групп. Особенности их нейронов. Гипоталамус как высший подкорковый вегетативный центр. Участие гипоталамуса в формировании мотиваций, эмоций, стресса, биоритмов.

Гипоталамус — структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организма.

Гипоталамус имеет большое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом. В состав гипоталамуса входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. Морфологически в нейронных структурах гипоталамуса можно выделить около 50 пар ядер, имеющих свою специфическую функцию. Топографически эти ядра можно объединить в 5 групп: 1) преоптическая группа имеет выраженные связи с конечным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемедиального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) задняя группа сформирована из медиальных и латеральных ядер сосцевидных тел и заднего гипоталамического ядра. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, корой большого мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время гипоталамус посылает информацию к таламусу, ретикулярной формации, вегетативным центрам ствола мозга и спинного мозга. Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса. К этим особенностям относятся чувствительность нейронов к составу омывающей их крови, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреции пептидов, нейромедиаторов и др. Роль гипоталамуса в регуляции вегетативных функций. Влияние на симпатическую и парасимпатическую регуляцию позволяет гипоталамусу воздействовать на вегетативные функции организма гуморальным и нервным путями. Раздражение ядер передней группы сопровождается парасимпатическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела автономной нервной системы. Указанное распределение функций гипоталамуса не абсолютно. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эффекты. В целом за счет большого количества связей, полифункциональности структур гипоталамус выполняет интегрирующую функцию вегетативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипоталамусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование—сон. Все эти центры реализуют свои функции путем активации или торможения автономного (вегетативного) отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гормон (АДГ), окситоцин и другие пептиды, которые по аксонам попадают в заднюю долю гипофиза — нейрогипофиз. Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизингфакторы (либерины) и ингибирующие факторы (статины), которые регулируют активность передней доли гипофиза — аденогипофиз..Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотического давления плазмы, количества и состав гормонов крови. Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимулировать эти ядра. Оказалось, что стимуляция некоторых ядер приводила к негативной реакции. Животные после однократной самостимуляции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др. Исследования Дельгадо (Delgado) во время хирургических операций показали, что у человека раздражение аналогичных участков вызывало эйфорию. Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раздражение заднего гипоталамуса вызывает активную агрессию. Раздражение заднего гипоталамуса приводит к экзофтальму, расширению зрачков, повышению кровяного давления, сужению просвета артериальных сосудов, сокращениям желчного, мочевого пузырей. Могут возникать взрывы ярости с описанными симпатическими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало нарушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние. Гипоталамус является также центром регуляции цикла бодрствование — сон. При этом задний гипоталамус активизирует бодрствование, стимуляция переднего вызывает сон. Повреждение заднего гипоталамуса может вызвать так называемый летаргический сон.

90. Лимбический мозг. Его роль в осуществлении функций, направлен­ных на сохранение вида, индивидуума, участие в формировании мотива­ций, эмоций, памяти, саморегуляции вегетативных функций.

Лимбическая система представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения, таких как пищевой, половой, оборонительный инстинкты. Эта система участвует в организации цикла бодрствование—сон.

Лимбическая система как филогенетически древнее образование оказывает регулирующее влияние на кору большого мозга и подкорковые структуры, устанавливая необходимое соответствие уровней их активности. Структуры лимбической системы включают в себя 3 комплекса. Первый комплекс — древняя кора (препериформная, периамигдалярная, диагональная кора), обонятельные луковицы, обонятельный бугорок, прозрачная перегородка. Вторым комплексом структур лимбической системы является старая кора, куда входят гиппокамп, зубчатая фасция, поясная извилина. Третий комплекс лимбической системы — структуры островковой коры, парагиппокамповая извилина. И, наконец, в лимбическую систему включают подкорковые структуры: миндалевидные тела, ядра прозрачной перегородки, переднее таламическое ядро, сосцевидные тела. Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояния другим системам мозга. В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеса (гиппокамп -» сосцевидные тела -» передние ядра таламуса -» кора поясной извилины -» парагиппокампова извилина -» гиппокамп). Этот круг имеет отношение к памяти и процессам обучения. Другой круг (миндалевидное тело -» гипоталамус -» мезенцефальные структуры -» миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения. Большое количество связей в лимбической системе, своеобразное круговое взаимодействие ее структур создают благоприятные условия для реверберации возбуждения по коротким и длинным кругам. Это, с одной стороны, обеспечивает функциональное взаимодействие частей лимбической системы, с другой — создает условия для запоминания. Обилие связей лимбической системы со структурами центральной нервной системы затрудняет выделение функций мозга, в которых она не принимала бы участия. Так, лимбическая система имеет отношение к регулированию уровня реакции автономной, соматической систем при эмоционально-мотивационнои деятельности, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации. Лимбическая система определяет выбор и реализацию адаптационных форм поведения, динамику врожденных форм поведения, поддержание гомеостаза, генеративных процессов. Наконец, она обеспечивает создание эмоционального фона, формирование и реализацию процессов высшей нервной деятельности.

Нужно отметить, что древняя и старая кора лимбической системы имеет прямое отношение к обонятельной функции.


Дата добавления: 2015-12-15 | Просмотры: 933 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)