АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Биогенные амины
Как уже говорилось, биогенные амины синтезируются из тирозина, причём каждый этап синтеза контролирует специальный фермент. Если в клетке есть полный набор таких ферментов, то она будет выделять адреналин и в меньшем количестве его предшественники – норадреналин и дофамин. Например, т.н. хромаффинные клетки мозгового вещества надпочечников выделяют адреналин (80 % секреции), норадреналин (18%) и дофамин (2%). Если нет фермента для образования адреналина, то клетка может выделять только норадреналин и дофамин, а если нет и фермента, требующегося для синтеза норадреналина, то единственным выделяемым медиатором будет дофамин, предшественник которого – L-ДОФА в качестве медиатора не используется.
Дофамин, норадреналин и адреналин часто объединяют термином катехоламины. Они управляют метаботропными адренорецепторами, которые есть не только в нервной, но и в других тканях организма. Адренорецепторы подразделяются на альфа -1 и альфа-2, бета-1 и бета-2: физиологические эффекты, вызванные присоединением катехоламинов к разным рецепторам, существенно отличаются. Соотношение разных рецепторов неодинаково у разных клеток-эффекторов. Наряду с адренорецепторами, общими для всех катехоламинов, существуют специфические рецепторы для дофамина, которые обнаружены в центральной нервной системе и в других тканях, например, в гладких мышцах кровеносных сосудов и в сердечной мышце.
Адреналин является главным гормоном мозгового вещества надпочечников, к нему особенно чувствительны бета-рецепторы. Есть сведения и об использовании адреналина некоторыми клетками мозга в качестве медиатора. Норадреналин выделяют постганглионарные нейроны симпатического отдела вегетативной нервной системы, а в центральной нервной системе – отдельные нейроны спинного мозга, мозжечка и коры больших полушарий. Самое большое скопление норадренэргических нейронов представляют собой голубые пятна – ядра мозгового ствола.
Считается, что с активностью этих норадренэргических нейронов связано наступление фазы парадоксального сна, однако только этим их функция не ограничивается. Ростральнее голубых пятен также есть норадренэргические нейроны, чрезмерная активность которых играет ведущую роль в развитии т.н. синдрома паники, сопровождающегося чувством непреодолимого ужаса.
Дофамин синтезируют нейроны среднего мозга и диэнцефальной области, которые образуют три дофаминэргические системы мозга. Это, во-первых, нигростриатная система: она представлена нейронами чёрной субстанции среднего мозга, аксоны которых заканчиваются в хвостатых ядрах и скорлупе. Во-вторых, это мезолимбическая система, сформированная нейронами вентральной покрышки моста, их аксоны иннервируют перегородку, миндалины, часть лобной коры, т.е. структуры лимбической системы мозга. И, в третьих, мезокортикальная система: её нейроны в среднем мозгу, а их аксоны оканчиваются в передней части поясной извилины, глубоких слоях фронтальной коры, энторинальной и пириформной (грушевидной) коре. Наивысшая концентрация дофамина обнаружена в лобной коре.
Дофаминэргические структуры играют видную роль в формировании мотиваций и эмоций, в механизмах удержания внимания и отборе наиболее значимых сигналов, поступающих в центральную нервную систему с периферии. Дегенерация нейронов чёрной субстанции приводит к комплексу двигательных расстройств, который известен как болезнь Паркинсона. Для лечения этой болезни используют предшественник дофамина – L-ДОФА, способный, в отличие от самого дофамина, преодолевать гематоэнцефалический барьер. В некоторых случаях предпринимаются попытки лечить болезнь Паркинсона введением ткани мозгового вещества надпочечников плода в желудочек мозга. Введённые клетки могут сохраняться до года и при этом вырабатывать значительное количество дофамина.
При шизофрении обнаруживается повышенная активность мезолимбической и мезокортикальной систем, что многими рассматривается как один из главных механизмов поражения мозга. В противоположность этому при т.н. большой депрессии приходится применять средства, повышающие концентрацию катехоламинов в синапсах центральной нервной системы. Антидепрессанты помогают многим больным, но, к сожалению, не способны сделать счастливыми здоровых людей, просто переживающих несчастливое время своей жизни.
Серотонин
Этот низкомолекулярный нейромедиатор образуется из аминокислоты триптофана с помощью двух, участвующих в синтезе ферментов. Значительные скопления серотонинэргических нейронов находятся в ядрах шва – тонкой полосе вдоль средней линии каудальной ретикулярной формации. Функция этих нейронов связана с регуляцией уровня внимания и регуляцией цикла сна и бодрствования. Серотонинэргические нейроны взаимодействуют с холинэргическими структурами покрышки моста и норадренэргическими нейронами голубого пятна. Одним из блокаторов серотонинэргических рецепторов является ЛСД, следствием приёма этого психотропного вещества становится беспрепятственный пропуск в сознание таких сенсорных сигналов, которые в норме задерживаются.
Гистамин
Это вещество из группы биогенных аминов синтезируется из аминокислоты гистидина и в самых больших количествах содержится в тучных клетках и базофильных гранулоцитах крови: там гистамин участвует в регуляции различных процессов, в том числе в формировании аллергических реакций немедленного типа. У беспозвоночных это достаточно распространённый медиатор, у человека он используется как нейротрансмиттер в гипоталамусе, где участвует в регуляции эндокринных функций.
Глутамат
Наиболее распространённый возбуждающий нейротрансмиттер головного мозга. Он выделяется аксонами большинства чувствительных нейронов, пирамидными клетками зрительной коры, нейронами ассоциативной коры, образующими проекции на полосатое тело.
Рецепторы для этого медиатора подразделяются на ионотропные и метаботропные. Ионотропные рецепторы глутамата разделяются на два типа, в зависимости от своих агонистов и антагонистов: НМДА (Н-метил-Д-аспартат) и не-НМДА. НМДА рецепторы связаны с катионными каналами, через которые возможен ток ионов натрия, калия и кальция, а каналы не-НМДА рецепторов не пропускают ионы кальция. Входящий через каналы НМДА рецепторов кальций активирует каскад реакций кальций-зависимых вторичных посредников. Считается, что этот механизм играет очень важную роль для формирования следов памяти. Связанные с рецепторами НМДА каналы открываются медленно и только при наличии глицина: они блокируются ионами магния и наркотическим галлюциногеном фенциклидином (который в англоязычной литературе называют "angel dust" – пыльный ангел).
С активацией НМДА рецепторов в гиппокампе связано возникновение очень интересного феномена – долговременной потенциации, особой формы активности нейронов, необходимой для формирования долговременной памяти. Интересно отметить и тот факт, что чрезмерно высокая концентрация глутамата токсична для нейронов – с этим обстоятельством приходится считаться при некоторых поражениях мозга (кровоизлияния, эпилептические приступы, дегенеративные заболевания, например, хорея Гентингтона).
Дата добавления: 2015-12-15 | Просмотры: 645 | Нарушение авторских прав
|