АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Роль генома в пластических изменениях нервной ткани

 

Роль генома в пластических изменениях нервной ткани может проявляться в различных вариантах. Доказана генетическая детерминированность силы возбудительного процесса, где генотип материнского организма определяет подвижность нервных процессов. Наследуется такое фундаментальное свойство нервной системы, как возбудимость. У видов, пород и рас животных, имеющих высокую нервно-мышечную возбудимость, наблюдается и более высокая пищевая возбудимость и более высокие показатели силы возбуждения. По наследству может передаваться повышенная способность к тому или иному виду обучения (например, в опытах на крысах – это преодоление лабиринта).

Возможно множественное влияние одного и того же гена, например, в контроле порога возбудимости нервной системы, содержания нейроактивных соединений и способности к обучению (образованию оборонительных условных рефлексов).

Могут наблюдаться анатомические изменения мозга. Так, у крыс с высоким уровнем условно-рефлекторной деятельности обнаружена большая ширина сенсомоторной области коры, большие размеры зубчатой фасции, мозолистого тела с большим числом миелинизированных волокон. Генетически детерминированные структурные особенности захватывают и лимбическую систему мозга, поэтому у хорошо обучающихся крыс по сравнению с животными с низким уровнем возбудимости и скорости образования условных рефлексов происходит увеличение: а) ширины лимбической коры; б) размера клеток ядер гипоталамуса и амигдалы; в) числа глиальных клеток свода.

Реализация генетической информации, закодированной в молекуле ДНК и ядре нервной клетки, осуществляется при непосредственном участии химических факторов самой цитоплазмы клетки. Помимо широко известных первичных химических посредников-нейромедиаторов, с помощью которых информация передается к нервной клетке и активирует ее в соответствии с присущей ей собственной генетической программой, в настоящее время в самостоятельную категорию метаболических факторов выделены вторичные посредники (мессенджеры). В первую очередь к ним относят циклический аденазинмонофосфат (цАМФ), выполняющий функцию универсального клеточного регулятора.

Ионы кальция также относят к категории вторичных посредников, от которых зависят как пресинаптические, так и постсинаптические процессы клетки и формирование ее электрической активности. Вслед за открытием рецептора кальция, т.е. белка кальмодулина, было установлено, что он регулирует синтез и распад цАМФ. Важную роль в этом процессе играют стероидные гормоны, которые реализуют свои эффекты, минуя систему вторичных посредников. В отличие от пептидных гормонов стероидные гормоны уже имеют собственные возможности проникновения в нервную клетку, где они связываются непосредственно с ее ядром.


Дата добавления: 2016-06-06 | Просмотры: 419 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)