АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Оочетанное действие химических и физических факторов

В производственных условиях часто имеет место одновременное действие химических веществ и других производственных факторов, в числе которых можно отметить шум, вибрацию, высокую температуру и влажность, значительные физические нагрузки и др. Все указанные факторы при определенных уровнях воздействия могут проявлять первостепенное значение в их суммарном биологическом действии с химическим фактором.

При достаточно низкой концентрации токсического вещества и повышении интенсивности или времени его воздействия влияние физического фактора существенно увеличивается. Наоборот, при равной интенсивности воздействия физического фактора значение химического агента в суммарном биологическом эффекте, как правило, возрастает с увеличением концентрации последнего в воздухе.

Температурный фактор. Наличие совместного действия вредных веществ и повышенной температуры воздуха имеет существенное значение в металлургической, машиностроительной и химической промышленностях, а также в сельском хозяйстве, особенно при использовании ядохимикатов. Многочисленными экспериментальными исследованиями было установлено, что одновременное воздействие промышленных ядов и повышенной температуры, как правило, усиливает и ускоряет развитие токсических проявлений действия веществ. Особенно это прослеживается на действии дыхательных ядов (оксид углерода, цианистый калий) и разобщителей окислительного фосфорилирования (1,2,4- динитрофенол, 4,6-динитро-о-крезол, динитро-фторбутилфенол и др.). Одновременное воздействие на мышей окиси углерода в постоянной концентрации при повышении температуры приводило к уменьшению средней продолжительности их жизни. Повышение температуры повышает чувствительность животных (снижение величины смертельных доз) к воздействию различных веществ, таких как бензин, нитробензол, цианистый калий, окислы азота, интратион и др.

Такое действие, по мнению исследователей, связано с комплексом реакций, нарушающих терморегуляцию, и приводящих к снижению общей реактивности организма и повышению чувствительности к действию яда. Если система терморегуляции предотвращает повышение температуры тела, то токсическое действие вещества или не

изменяется, или оказывается даже ослабленным; это было отмечено у адаптированных к повышенной температуре животных.

Среди комплекса причин, обусловливающих повышенную токсичность при повышении температуры, имеет значение и изменение функционального состояния нервной системы. Немаловажными причинами для усиления активности ядов могут стать увеличение минутных объемов дыхания и сердца, что приводит к увеличению поступления и абсорбции газо- и парообразных веществ через верхние дыхательные пути (бензин, бензол, окись этилена, сернистый газ, хлороформ, и др.). При оценке комплексного воздействия яда и повышенной температуры нельзя непосредственно переносить сведения о действии ядов с животных на человека вследствие того, что механизмы «борьбы» с повышенной температурой у животных (за счет увеличения легочной вентиляции) и у человека (за счет повышения потоотделения, а не за счет повышения объема дыхания) при перегреве различные. Повышенная температура воздуха приводит к гиперемии кожных покровов, значительному потоотделению, что соответственно повышает проникновение ядов в организм через неповрежденную кожу. Гипертермия обусловливает накопление ядов в организме (например, анилина) за счет замедления скорости его метаболизма, обезвреживания (уменьшение активности дегидрогеназы и цитохромоксидазы в печени) и выделения, которые связаны с нарушением обмена веществ. Все сказанное позволяет считать, что одновременное воздействие на организм вредных веществ и повышенной температуры окружающей среды приводит к суммированию их биологических эффектов, вызывая «синдром взаимного отягощения».

Воздействие химических веществ и пониженной температуры более всего изучено при воздействии оксида углерода. Понижение температуры и гипертермия приводят к усилению его токсичности, которая связана как с изменением общей реактивности организма, так и с увеличением метгемоглобинообразования и нарушением в этих условиях терморегуляции. Понижение температуры в большинстве случаев ведет к усилению токсического эффекта (у мышей) при действии бензина, бензола, сероуглерода, динитрогликола, трихлорэтилена, анилина, оксидов азота. Отмечались также случаи снижения чувствительности животных к воздействию хлорофоса.

Имеющиеся литературные данные говорят о том, что при воздействии химических веществ в условиях воздействия как повышенной,

так и пониженной температур могут быть случаи снижения чувствительности организма к воздействию комплекса факторов. Так, например, не обнаружилось усиления токсичности анилина при воздействии повышенной температуры в опытах на собаках, хотя в опытах на крысах токсичность анилина усиливалась. Было отмечено снижение силикотического процесса у кроликов по сравнению с крысами при одинаковом воздействии кварцевой пыли и пониженной температуры. Для ряда промышленных ядов известны диапазоны температур, для которых характерно не усиление, а ослабление токсического эффекта. Для бензина «Калоша» это было при температуре 10?С, для хлорофоса - при 12?С, для окислов азота - в диапазоне 22-15?С. Поэтому при действии высоких и низких температур имеют значение концентрация и доза вредного вещества, длительность воздействия яда, режим воздействия, видовые различия. Нельзя забывать и о том, что у работающих, которые закалены к воздействию особенно пониженных температур повышается уровень состояния неспецифической повышенной сопротивляемости (СНПС) к воздействию потенциально вредных факторов.

Повышенная влажность воздуха. Повышенная влажность воздуха изменяет физико-химические свойства промышленных ядов, в первую очередь, усиливает раздражающее и общетоксическое действия легко гидролизующихся соединений (хлорсиланы, четыреххлористый германий и титан и др.), это связано с образованием у них значительных количеств соляной кислоты. Раздражающий эффект окислов азота связан также с образованием капелек азотной и азотистой кислот, которые действуют не только на кожные покровы и слизистые, но и на дыхательные пути. Действие окиси углерода повышается при высокой влажности в сочетании с повышенной температурой. Повышенная влажность, как и повышенная температура, предопределяют интенсивность теплоотдачи, что может способство- вать перегреванию организма и за счет этого увеличивать его чувствительность к токсическому действию ядов.

Физическая нагрузка. Большое значение для промышленной токсикологии имеет сочетание воздействия химического производственного фактора с физической нагрузкой. Нагрузка может быть различной степени тяжести, и от этого напрямую зависят изменения, которые происходят в организме. При значительной физичес- кой нагрузке происходит повышение легочной вентиляции с 6-8 (в норме) до 15-20 л/мин и увеличение минутного объема сердца с

3-5 до 15 литров, усиливается активность нервно-эндокринной системы, повышается активность желез внутренней секреции и печени как основного дезинтоксикационного органа. Повышение легочной вентиляции во время работы в течение длительного времени, особенно за счет глубины вдоха способствует значительному поступлению в легкие любых аэрозолей и газов, которые не создают быстрого насыщения крови. Все это приводит к увеличению полученной дозы химического агента.

Физическое напряжение тесно связано с усилением потребления кислорода. Яды гипоксического действия (окись углерода, анилин и др.) усиливают свое влияние при увеличении нагрузки за счет снижения насыщаемости кислородом тканей и органов, вызывая более быстро и более остро кислородное голодание. Отмечено усиление токсического влияния при физической работе четыреххлористого углерода, озона, свинца, аэрозоля и паров параоксона и зарина, хлористого водорода, дихлордиэтилсульфида, крекинг-газа, содержаще- го сероводород и пары предельных и непредельных углеводородов.

Гиперемия кожи и обильное потовыделение способствуют лучшему растворению и резорбции ядов через кожу. Временное снижение активности мочевыделительной системы при мышечной работе осложняет течение интоксикации за счет уменьшения выделения яда из организма. Показано, что работа влияет не только на токсический эффект действия яда, но и на локализацию повреждений. При свинцовой и ртутной интоксикациях парезы и параличи развиваются, в первую очередь, на интенсивно работающей руке. Острая и хроническая интоксикация соответственно могут способствовать снижению работоспособности у животных, это отмечено при действии инсектицида М-81, диэлдрина, стирола, винилпропионата, моно- и дихлорстирола, диоксилсебацината, бутилацетата, окиси углерода, бензина и др.

Организм является сложной саморегулирующейся системой. Во время физической работы происходит временное снижение функ- циональной активности пищеварительной системы, что затрудняет всасывание ядов через пищеварительный тракт, снижая степень токсического действия. На производстве у работающих также происходит постоянная тренировка мышечной системы, (особенно если проводится система оздоровительной физкультуры), которая приво- дит к появлению адаптации к мышечной работе и, соответственно, к повышению реактивности организма. Увеличивается мышечная

масса, повышается резерв систем кровообращения и дыхания и механизмов их мобилизации. Поэтому возможно снижение потенциального неблагоприятного эффекта сочетанного воздействия разовой физической нагрузки и промышленного яда. Это было подтверждено и в опытах на животных. За счет развития состояния неспецифической повышенной сопротивляемости (СНПС), как в случаях воздействия других физических факторов у них повышается устойчивость к ядам. Установлено, что «тренированные» животные более устойчивы к действию этанола, диэтилового эфира, хлороформа, трихлорэтиламина.

Шум и вибрация. Воздействие химических факторов в сочетании с шумом изучалось довольно продолжительное время. Первоначально было показано, что такое комплексное воздействие на организм носит аддитивный (суммирующий) характер. Это отмечено при воздействии оксида углерода, стирола, акрилонитролов, крекинггазов, аэрозоля борной кислоты, нефтяных газов). Некоторые клинико-гигиенические исследования подтверждают этот вывод при изучении совместного действие шума с рядом веществ (хлорофосом, углеводородами малосернистой нефти, бензином марки Б-70, ацетоном, аэрозолями свинца, сурьмы и мышьяка). При этом уровни воздействия шума были от 85 до 105 дБА, а уровни воздействия химических факторов колебались от 1/3 ПДК до максимально переносимых. После разработки методических подходов для решения влияния комплекса химических и физических факторов, которые позволили оценивать функциональное состояние ряда регуляторных систем, участвующих в поддержании гомеостаза центральной нервной, нейро-эндокринной, иммунной, сердечно-сосудистой, кроветворной систем, были получены новые данные. Было установлено, что воздействие представителей различных классов химических соединений, обладающих разной токсичностью (сероуглерод, ацетон, трихлорэтилен, четыреххлористый углерод) на уровне - 5 Limch, и шума на уровне нормативных значений (85 дБА) и выше их (95 дБА) не приводит к суммации эффектов как по интегральным, так и специфическим показателям. Основной тип взаимодействия факторов оказался антагонистическим (субаддитивным).

Исследованиями показано, что химический фактор усугубляет развитие вибрационной болезни у горнорабочих. В то же время вибрация способствует накоплению в организме тяжелых металлов (нарушая кинетику обмена), проявляя тем самым аддитивный харак-

тер действия. На основании комплексной оценки функционального состояния вегетативного отдела ЦНС, сердечно-сосудистой и иммунной систем, функции печени было показано усиление эффекта от комплексного воздействия на организм общей низкочастотной вибрации и шума в сочетании с токсическими веществами на уровне ПДК и ПДУ (СО, SO2 NO2, бензол, формальдегид, четыреххлористый углерод, фенол). Данный усугубляющий эффект комплексного воздействия вибрации и ядов связан с возможным нарушением проницаемости клеточных мембран, нарушением функционального состояния печени (нарушение проницаемости печеночных клеток, снижение антитоксической и белковообразующей функций печени) и, как следствие - нарушением метаболизма токсических веществ и замедлением выведения их из организма.

В связи с этим для обеспечения безопасности комплексных воздействий факторов производственной среды достаточно соблюдать регламенты каждого вредного фактора в отдельности.

Ультрафиолетовое излучение. Оценка действия УФ-излучения и химических факторов также основана в основном на экспериментальных данных. Подтверждена важная роль УФ-радиации в формировании общей неспецифической резистентности организма. Были установлены определенные закономерности. Так, при действии анилина и нитрита натрия (контроль по изменению содержания метгемоглобина в крови), хлорофоса (по активности холинэстеразы), пестицида (метафоса), динитрохлорбензола и различных доз УФ-излучения была выявлена параболическая зависимость. Наиболее благоприятный эффект комплексного воздействия был получен при 3/4 эритемной дозы УФ (оптимальная доза). В условиях дефицита и избытка УФ-облучения степень токсического действия химических веществ увеличивалась.

УФ-излучение также формирует повышенную резистентность к химическим канцерогенам (многократные накожные аппликации 3,4-бензпирена, энтеральные введения мышам диметилнитрозамина). Оптимальный уровень УФ-облучения, который тормозил развитие опухолевой реакции у мышей (в 2 раза по частоте и скорости малигнизации), оказался равным 3/ эритемной дозы. Крайние отклонения в ту или иную стороны от оптимума УФ-облучения отягощали эффект.

Было установлено, что облучение животных (мыши) субэритемными дозами УФ-излучения вызывает повышение активности

ряда ферментов (микросомальных оксидаз, ферментов тканевого дыхания), принимающих участие как в метаболизме химического канцерогена, так и в системе восстановления нормальных процессов тканевого дыхания, поврежденных канцерогеном. Кроме того, УФ-радиация в оптимальной дозе повышала иммунологическую реактивность и неспецифическую резистентность организма.

Ионизирующая радиация. Развитие атомной промышленности и химизация всех сфер человеческой деятельности делают актуальной проблему комплексного действия на организм радиации и ядов. Более подробно о действии радиации можно узнать из радиационной гигиены, здесь мы коснемся только небольшого аспекта совместного действия двух факторов.

Оценено в эксперименте совместное действие повреждающих доз общего внешнего гамма-облучения (450-1000 рад) и химических соединений разных классов, таких как гипоксические яды (оксид углерода, цианиды, нитриты, диоксид азота), ядов-неэлектролитов (фреоны, ацетон, ароматические углеводороды), ядов-радиосенсибилизаторов (органические перекиси, озон, формальдегид) и некоторых животных ядов. У мышей и крыс в опытах оценивали изменение массы тела, уровни смертности и ряд биохимических показателей после воздействия токсических доз веществ. Предварительное или одновременное с радиацией воздействие гипоксических ядов вызывает ослабление степени поражения, особенно при воздействии веществ на уровне среднесмертельных доз (DL50), а воздействие различного рода радиомиметиков (так называемых, сульфгидрильных ядов) приводит преимущественно к усилению степени поражения, к развитию радиосенсибилизации.

Потенцирующий эффект был обнаружен при совместном действии (хроническая энтеральная затравка) излучающего радионуклида (радия-226) и гербицида (тетраметилтиурамдисульфида-ТМТД) на крыс. Наибольшая гибель крысят от опытных крыс отмечалась среди 2-3 пометов (из прослеженных 5) 1-го и 2-го поколений животных, и менее выраженная - в 3-м поколении.

Установлено, что совместное воздействие бензпирена и полония- 210 сопровождается суммацией и потенцированием канцерогенной эффективности каждого из агентов (частота образования эпители- альных раков и сокращение среднего латентного периода возникновения первых 20% опухолей).

 


Дата добавления: 2016-06-06 | Просмотры: 491 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)