АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

МУЛЬТИПОЛЬНЫЙ ЭКВИВАЛЕНТНЫЙ ГЕНЕРАТОР

Прочитайте:
  1. A) генератор патологически усиленного возбуждения
  2. Алгоритм «Работа на генераторе аргоновой плазмы Arco 1000
  3. Генератор незатухающих колебаний УВЧ.
  4. ГЕНЕРАТОРА ОРГАНОВ И ТКАНЕЙ
  5. Генераторы гармонических и импульсных колебаний и их применение в медицине.
  6. ГИПОРЕГЕНЕРАТОРНЫЕ АНЕМИИ
  7. Усилители-генераторы

В электрическом отношении сердце можно рассматривать как совокупность электрических зарядов (ионов), распределенных не­которым определенным образом в области сердца. Электрические поля отдельных ионов, накладываясь друг на друга, создают в любой точке пространства результирующее поле, потенциал которо­го равен сумме потенциалов полей, создаваемых этими зарядами (принцип суперпозиции полей).

Вычислить такую сумму практически невозможно, так как точное распределение зарядов в области сердца (и его изменения с течением времени) не известно. Однако, из электродинамики известно, что если заряды распределены в некоторой области пространства, то потенциал поля, создаваемого этими зарядами в удаленной от них точке, можно представить в виде, следующей бесконечной суммы:

(1)

где r - расстояние от системы зарядов до точки с потен­циалом φ;

f1, f2,f3….- некоторые функции, зависящие от ви­да зарядов, от свойств среды и от направления на интересующую нас точку (конкретный вид функций f1 и f2 будет рассмотрен ниже).

Первое слагаемое в формуле (1) соответствует потенциалу, создаваемому монополем, второе - диполем, третье - квадруполем и т. д. Общее название подобных распределений зарядов - элект­рические мультиполи.

Мультиполи бывают различных порядков К (К =0,1,2,3…)

Число зарядов мультиполя определяется выражением 2к.

На значительных расстояниях r от мультиполя (r >>L, где L – размеры мультиполя) потенциал его поля убывает пропорционально .

Монополь или мультиполь нулевого порядка (20=1)- это просто точечный заряд g. На расстоянии r потенциал поля

(первое слагаемое в формуле 1).

Диполь – это мультиполь первого порядка (21= 2).

Электрическим диполем называют систему, состоящую из двух равных по величине, но противоположных по знаку точечных зарядов, расположенных друг от друга на расстоянии L (плечо диполя).

Основной характеристикой диполя является его электрический дипольный момент(Р), равный произведению заряда g на плечо диполя L. Р = g*L (2)

Дипольный момент Р – это вектор. Он направлен от отрицательного заряда к положительному. В точке, удаленной от диполя на расстояние r, потенциал его поля (второе слагаемое в формуле 1).

Квадруполь – мультиполь второго порядка (22=4). Он может быть представлен системой из 4 зарядов. На расстоянии r потенциал поля, coздаваемого квадруполем, (третье слагаемое в формуле 1)

Октуполь – это мультиполь третьего порядка (23= 8). Он состоит из 8 зарядов, а потенциал его поля определяется выражением (четвертое слагаемое в формуле 1)

 

 

Физико –математическая модель, описывающая потенциал электрического поля сердца уравнением (1) называется мультипольным эквивалентным электрическим генератором сердца.

В зависимости от степени точности, с которой мы хотим определить потенциал поля, могут использоваться различные виды мультипольных эквивалентных генераторов, содержащие разное число слагаемых из уравнения (1). Определим, какие слагаемые уравнения (1) являются наиболее важными.

В организме все ионы образуются при диссоциации нейтраль­ных молекул и поэтому в миокарде числа отрицательных и положи­тельных ионов одинаковы, а их суммарный заряд равен нулю. Это значит, что первое слагаемое в уравнении (1) равно нулю, так как именно оно зависит от общего заряда системы.

Мультиполи высоких порядков мало влияют на потенциал дос­таточно удаленных точек, так как их вклaд обратно пропорциона­лен высоким степеням расстояния до точки (1/rk+1)). Таким ­образом, потенциал поля сердца определяется главным образом его дипольным моментом.

Модель, в которой электрическая активность миокарда заменяется действием одного эквивалентного точечного диполя, назы­вается дипольным эквивалентным генератором сердца. Это понятие лежит в основе теории Эйнтховена и будет в дальнейшем рассмотрено нами более подробно.

Следует отметить, что расстояния до точек, в которых на поверхности. тела регистрируются биопотенциалы, все-таки не очень велики по сравнению с размерами самого сердца. Поэтому для более точного моделирования сердечной деятельности приме­няют эквивалентные генераторы, учитывающие квадрупольный член или рассматривают сердце как совокупность нескольких диполей, легализованных в разных его участках – многодипольные эквивалентные генераторы. Например, модели Миллеоа и Гезелоувитца, Баума и Дубровина и другие (5)


Дата добавления: 2014-09-29 | Просмотры: 1992 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)