Показатели объемной скорости нельзя получить при спирографии, для этого используется пневмотахография
Пневмотахография проводится с помощью приборов пневмотахометров, снабженных специальными датчиками - термоанемометрами, при прохождении струи выдыхаемого воздуха меняется электрическое сопротивление пропорционально объемной скорости воздушного потока, что позволяет по показаниям прибора вычислить основные параметры внешнего дыхания. Компьютерный анализ позволяет представить полученную информацию в виде кривой «поток-объем», которая отражает проходимость различных участков дыхательных путей.
^ 72. Газообмен в легких и тканях…
В процессе внешнего дыхания происходит газообмен в легких. За счет этого формируется состав альвеолярного и выдыхаемого воздуха.
Газовый состав вдыхаемого, альвеолярного и выдыхаемого воздуха
Дыхательные газы
| Вдыхаемый воздух
| Альвеолярный воздух
| Выдыхаемый воздух
| О2 % мм рт.ст.
| 20,9% 160 мм рт.ст.
| 13,5% 104 мм рт.ст.
| 15,5% 120 мм рт.ст.
| СО2 % мм рт.ст.
| 0,03% 0,2 мм рт.ст.
| 5,3% 40 мм рт.ст.
| 3,7% 27 мм рт.ст.
|
Внешнее дыхание необходимо для обновления альвеолярного воздуха, т.к. в процессе жизнедеятельности идет постоянный процесс потребления О2 и выделения СО2, это поддерживает концентрацию дыхательных газов в нем на постоянном уровне.
Интенсивность внешнего дыхания подчинена задачам обеспечения оптимальных условий для газообмена в организме. Оптимальные условия сохраняются в организме определенное время (3-4 секунды). Этим и определяется частота дыхания (14-18 в минуту). Таким образом, аппарат дыхания обладает резервами, которые позволяют обменивать воздух с определенной периодичностью.
^ Процесс газообмена состоит из 3-х этапов дыхания:
2 этапа дыхания. Обмен газов между альвеолярным воздухом и кровью.
3 этапа дыхания. Транспорт газов кровью.
4 этапа дыхания. Обмен газов между кровью и тканями.
В основе 2 и 4 этапов дыхания лежат одни и те же механизмы, т.е. в основе обмена газов между альвеолами и кровью, а также кровью и тканями лежит одно физическое явление - процесс диффузии.
^ Механизмы 2-го и 4-го этапов дыхания.
Мембраны клеток хорошо проницаемы для газов, следовательно для перемещения газов из одной среды в другую не надо активного транспорта, а достаточно физического процесса диффузии.
В основе диффузии лежит разность концентраций. Молекулы из области большей концентрации распространяются в область меньшей концентрации.
Если газ находится над жидкостью, он также легко в неё переходит, растворяясь в ней. Интенсивность перехода газов в жидкость зависит от парциального давления газа над ней.
Давление газа в смеси с другими газами, выраженное в мм рт. ст., принято называть "парциальным давлением".
Давление газа, растворенного в жидкости, обозначают как "напряжение".
При относительно длительном контакте газов и жидкости в определенный момент времени парциальное давление газа над жидкостью и напряжение газа в жидкости выровняются.
При резком снижении парциального давления одного из газов либо снижении суммарного атмосферного давления жидкость с растворенными в ней газами начинает "кипеть" (до тех пор, пока вновь не выровняются парциальное давление и напряжение газов (примеры с шампанским, "кессонная болезнь" - помощь - экстренное помещение в барокамеру с постепенным снижением давления)).
Содержание дыхательных газов в альвеолярном воздухе, крови и тканях
| Венозная кровь
| Альвеолярный воздух
| Артериальная кровь
| Ткани
| СО2(мм рт. ст.)
| 46
| 38
| 40
| 50-60
| О2 (мм рт. ст.)
| 40
| 100
| 100
| 20-40
| Примечание: стрелочкой указано направление диффузии.
При этом следует иметь в виду, что аэрогематический барьер легких обладает определенной проницаемостью, которая характеризуется диффузионной способностью легких.
^ Диффузионная способность легких -это количество мл газа которое проходит за 1 минуту через легочную мембрану при разнице парциальных давлений по обе стороны мембраны 1 мм.рт.ст. Для О2 составляет 20-25 мл, для СО2 она существенно больше/т.к. разница парциального давления меньше многократно/, а объем выделяемого СО2 такой же как и О2. С возрастом диффузионная способность легких снижается. Гистагематический
^ 73. Транспорт газов кровью…
Механизмы связывания газов кровью
1. Физическое растворение
2. Химическое связывание
1. Физическое растворение. В жидкой части крови растворены газы воздуха: кислород, углекислый газ, азот. Растворение О2 и СО2 в воде не играет физиологической роли.
2. Химическое связывание кислорода кровью.
Насыщение кровью кислородом зависит от:
Альвеолярной вентиляции /pO2 в альвеолах/ Кровотока в легких Диффузионной способности легких Содержания гемоглобина в эритроцитах 1 г HHb способен связать 1,35 мл О2. При содержании гемоглобина 150 г/л (норма) каждые 100 мл крови переносят 20,8 мл О2. Это кислородная емкость крови.
Другой показатель-содержание кислорода в крови, взятой в различных участках сосудистого русла: артериальной/20 мл О2/100 мл крови/ и венозной/14 млО2/100 мл крови/.
Следующий показатель - артерио-венозная разница/норма 5-6 мл О2/100 мл крови/.
Отношение кислорода, связанного с гемоглобином к кислородной емкости крови/все выраженное на 100 мл крови/ называется насыщение гемоглобина кислородом. В артериальной крови оно составляет в норме 96%.
Гемоглобин присоединяет кислород с помощью непрочной водородной связи, с образованием оксигемоглобина Эта реакция обратима:
Нв+О2=НвО2
Направленность реакции зависит от содержания кислорода: если количество кислорода в крови увеличивается, то реакция идет в сторону образования оксигемоглобина, если уменьшается - то в противоположную сторону.
Динамика взаимодействия Нв и О2 отражается кривой диссоциации оксигемоглобина. Эта кривая количественно определяет приведенную выше реакцию связывания гемоглобином кислорода. Кривая отражает общую закономерность: увеличение количества кислорода сопровождается усиленным образованием оксигемоглобина. Кривая диссоциации оксигемоглобина имеет S-образный вид. Это связанно с тем, что до 10 мм рт. ст. кислород связывается гемоглобином медленно, затем до 60-50 мм рт. ст. скорость реакции резко увеличивается, кривая круто поднимается вверх, при давлении 90 мм рт. ст., когда более 98% гемоглобина связано с кислородом, она вновь идет почти горизонтально.
Избыток СО2 и ацидоз сдвигает кривую диссоциации вправо, а недостаток СО2 и алкалоз – влево(эффект Бора).
В легких реакция взаимодействия гемоглобина с кислородом идет в сторону образования оксигемоглобина, т.к. венозная кровь имеет напряжение кислорода 40 мм рт. ст., а в альвеолярном воздухе парциальное давление кислорода составляет 100 мм рт. ст.
В тканях напряжение О2 равно 20-40 мм рт. ст., а в артериальной крови - 100 мм рт. ст., в связи с этим реакция идет в сторону распада оксигемоглобина. Кровь отдает ткани часть О2..
Этот процесс оценивается коэффициентом утилизацией/ кислорода(КУК). КУК это отношение потребленного кислорода к кислородной емкости крови. В норме в покое 30-40%, при физ. нагрузках существенно возрастает.
Для оценки эффективности газообмена вычисляют коэффициент использования кислорода (КИК). Он показывает количество кислорода в мл, которое потребляется из 1 литра воздуха. В норме он составляет 40 мл.
^ Химическое присоединение СО2
Напряжение СО2 в тканях составляет 60 мм.рт.ст., а в притекающей крови 50-60 мм.ст.рт. Благодаря этому СО2 переходит из ткани в кровь/46 мм.рт.ст./.
Основная форма связывания СО2 кровью - это образование бикарбонатов натрия и калия.
СО2 + Н2О = Н2СО3
Эта реакция обратима, ее направление зависит от количества СО2. Его увеличение сдвигает реакцию вправо, уменьшение - влево. Образующаяся угольная кислота диссоциирует:
Н2 СО3 ---- Н+ + НСО3-
Следовательно, в эритроците образуются катионы Н+ и анионы НСО3-. катионы водорода вступают в реакцию восстановления гемоглобина: Н+ + Нв ННв,
Анионы НСО3- - частично выходят из эритроцитов в плазму из-за разности концентраций. Таким образом, в плазме и в эритроцитах появляется значительное количество анионов НСО3 - , которые в плазме взаимодействуют с катионами натрия/55%/, а в эритроцитах – калия/35%/, образуя гидрокарбонаты Na и К.
Ключом всех этих реакций служит фермент карбоангидраза, который содержится в мембранах эритроцитов и катализирует обратимую реакцию соединения углекислого газа с водой.
Кроме того, небольшое количество углекислого газа /10%/ транспортируется в виде карбогемоглобина - соединения СО2 с гемоглобином.
^ 74. Регуляция дыхания…
Главная задача регуляции дыхания - чтобы потребление кислорода, поставка его тканям за счет внешнего дыхания были адекватны функциональным потребностям организма.
Самый эффективный способ регуляции дыхания в целом - это регуляция внешнего дыхания.
Интенсивность внешнего дыхания зависит от варьирования его частоты и глубины. При этом изменяется доставка кислорода организму и выведение из него углекислого газа.
В регуляции дыхания можно выделить 3 группы механизмов:
1. Обеспечение организации дыхательного акта (последовательность вдоха и выдоха).
2. ^ Перестройка дыхания в соответствии с потребностями организма - изменение частоты и глубины дыхания.
3. Регуляция тонуса кровеносных сосудов легких и бронхиального дерева.
^ 1-ая группа. Механизмы организации дыхательного акта
Чередование вдоха и выдоха организуется благодаря деятельности дыхательного центра. Отличия морфологического и функционального понятия НЦ.
^ Дыхательный центр представляет собой совокупность нейронов, объединенных общей функцией организации и регуляции дыхания и расположенных в разных "этажах" центральной нервной системы.
^ Выделяют 4 "этажа":
- спинной мозг,
- продолговатый мозг,
- варолиев мост,
- высшие отделы ЦНС (гипоталамус, лимбическая система, кора больших полушарий).
Каждый из перечисленных отделов имеет определенную функцию.
1 этаж: Спинной мозг содержит двигательные центры дыхательной мускулатуры. Представлены мотонейронами передних рогов спинного мозга:
- грудной отдел (Th1 - Th6 - nn. intercostales) - межреберные нервы иннервируют наружные косые межреберные мышцы.
- шейный отдел (С3 - С5) - n. frenicus. Диафрагмальный нерв иннервирует диафрагму.
При перерезке ЦНС между спинным и продолговатым мозгом процесс дыхания прекращается (т.к. центры спинного мозга не обладают автоматией).
При перерезке спинного мозга между шейным и грудным отделами дыхание сохраняется за счет сокращения диафрагмы (диафрагмальное дыхание).
2 этаж: Дыхательный центр продолговатого мозга (собственно дыхательный центр) обеспечивает последовательную смену вдоха и выдоха.
Открыт в 1885 г. русским исследователем Н.А. Миславским на дне 4-го желудочка продолговатого мозга. Это - парное образование. Связан проводящими путями с выше- и нижерасположенными нервными центрами (мотонейроны спинного мозга - 1-ый этаж дыхательного центра).
В составе дыхательного центра часть нейронов ответственна за вдох, другая часть - за выдох. Т. е. Выделяют т.н. Экспираторный и Инспираторный центры. Это - функциональные образования, т.к. морфологически их выделить нельзя.
Между центрами - реципрокные взаимоотношения. Это и обеспечивает чередование процессов вдоха и выдоха, т.к. активация нейронов одного отдела вызывает угнетение другого.
Собственно дыхательный центр обладает автоматией. 4-5 раз в минуту в ДЦ возникает самопроизвольное возбуждение, не связанное с поступлением импульсов из других центров, а обусловленное особенностью метаболизма клеток ДЦ. Это обеспечивает автономность от других влияний и поддержание жизненно важной функции на базальном уровне.
Таким образом, при пересечении ЦНС выше продолговатого мозга будет наблюдаться глубокое и редкое дыхание (дыхание Куссмауля), другие виды патологического дыхания: Чейн-Стокса, Биотта, Грокко.
Третий "этаж" дыхательного центра расположен в варолиевом мосту и назван пневмотАксическим (таксис). Он способствует переключению возбуждения с центра вдоха на центр выдоха и наоборот. Возбуждение пневмотаксического центра приводит к угнетению центра вдоха, а нейроны, ответственные за выдох - активируются. Существует и обратный механизм, который обеспечивает переключение с выдоха на вдох.
Перерезка ЦНС выше Варолиева моста позволяет поддерживать частоту дыхания на уровне 14-18 в минуту.
Роль периферических процессов в функционировании 2 и 3 этажа дыхательного центра, в организации дыхательного акта.
Четвертый этаж - высшие отделы ЦНС.
Гипоталамус - регулирует дыхание во время простых поведенческих актов:
- при общей защитной реакции организма (боль, физическая работа);
- высший центр терморегуляции, поэтому при гипертермии наблюдается учащение дыхания без изменения его глубины (значительно увеличивается вентиляция ОМП, что увеличивает теплоотдачу: дыхание собаки в жару).
^ Лимбическая система - регуляция дыхания при эмоциях ("хмыкнул" - разная интонация м.б., "чего сопишь?", крайние формы выражения эмоций - смех и плач - это измененные дыхательные движения).
^ Кора больших полушарий принимает участие:
- в выработке условных дыхательных рефлексов,
- в приспособлении дыхания к изменяющимся условиям окружающей среды (глотание, пение, речь, ныряние, произвольное апное и гиперпное).
Дыхание - единственная функция внутренних органов, подверженная сознательной регуляции без предварительной тренировки (йоги), так как висцеральная функция реализуется через соматическую мускулатуру.
^ 75. Механизмы перестройки внешнего дыхания…
1. Роль хеморецепторов
1.1. Влияние углекислого газа (СО2)
Мощным регулятором дыхания является СО2. Пути воздействия СО2:
- Рефлекторно (через хеморецепторы сосудистого русла, прежде всего –каротидного синуса).
- Прямое воздействие СО2 на нейроны ствола мозга, собственно ДЦ.
Накопление СО2 в крови /гиперкапния/ стимулирует дыхание - человек будет дышать глубже и чаще.
С другой стороны, после искусственного гиперпное возникает апное (т.к. СО2 вымывается из крови /гипокапния/).
1.2. Значение О2.
Хеморецепторы каротидного синуса реагируют на изменение рО2, но менее выраженно, чем на СО2, гипоксия стимулирует дыхание, гипероксия снижает объем легочной вентиляции.
Дата добавления: 2015-02-02 | Просмотры: 1311 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
|