АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Напряженность магнитного поля и другие его свойства
Напряженность магнитного поля зависит от свойства среды, а определяется только силой тока, протекающего по контуру. Напряженность магнитного поля, созданного постоянным током, слагается из напряженности полей, создаваемых его отдельными элементами (Закон Био-Савара-Лапласа):
(dH – напряженность, k – коэффициент пропорциональности, di и r – векторы). Интегрируя, находим напряженность магнитного поля, созданного контуром с током или частью этого контура:
Круговым называется ток, протекающий по проводнику в форме окружности. Этому току соответствует также вращающийся по окружности электрический заряд. Зная напряженность магнитного поля и относительную магнитную проницаемость среды, можно найти магнитную индукцию:
B = M + M0H = mNf(2r).
Магнитные свойства вещества
Нет таких веществ, состояние которых не изменялось бы при помещении их в магнитное поле. Более того, находясь в магнитном поле, вещества сами становятся источниками такого поля. В этом смысле все вещества принято называть магнетиками. Так как макроскопические различия магнетиков обусловлены их 38б строением, то целесообразно рассмотреть магнитные характеристики электронов, ядер, атомов и молекул, а также поведение этих частиц в магнитном поле.
Отношение магнитного момента частицы к моменту ее импульса называют магнитомеханическим. Соотношения показывают, что между магнитным и механическим (момент импульса) моментами существует вполне определенная «жесткая» связь; эта связь проявляется в магнитомеханических явлениях. Магнитомеханиче-ские явления позволяют определять магнитомехани-ческие отношения и на основании этого делать выводы о роли орбитальных или спиновых магнитных моментов в процессах намагничивания. Так, например, опыты Эйнштейна показали, что за намагниченность ферромагнитных (железомагнитных) материалов ответственны спиновые магнитные моменты электронов.
Ядра, атомы и молекулы также имеют магнитный момент. Магнитный момент молекулы является векторной суммой магнитных моментов атомов, из которых она состоит. Магнитное поле воздействует на ориентацию частиц, имеющих магнитные моменты, в результате чего вещество намагничивается. Степень намагничивания вещества характеризуется намагниченностью. Среднее значение вектора намагниченности равно отношению суммарного магнитного момента Spmi всех частиц, расположенных в объеме магнетика, к этому объему:
Таким образом, намагниченность является средним магнитным моментом единицы объема магнетика. Единицей намагниченности служит ампер на метр (А/м).
Дата добавления: 2015-02-02 | Просмотры: 693 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 |
|