При разрушении однородных тел процесс образования и развития трещины зависит от типа деформации. Схема основных частей трещины и их различные типы представлены на рис. 11.9,11.10.
Для наглядности в вершине трещины (рис. 11.10) помещена трехмерная система координат. Если деформация определяется силами, ориентированными по направлению ОУ, то края трещины симметрично расходятся в противоположных направлениях (I тип).
Если края трещины и ее поверхности скользят друг по другу в направлении ОХ (поперек фронта трещины), то возникают деформации поперечного сдвига (II тип).
В случае, когда края и поверхность трещины движутся относительно друг друга в направлении OZ (т. е. вдоль фронта трещины,
параллельно ему) формируются деформации продольного сдвига (III тип).
Зарождение трещины и ее рост приводят к изменению конструкционных качеств деформируемого тела и могут закончится разрушением тела.
Ниже для примера рассмотрены повреждения, характерные для длинных трубчатых костей. Разрушения таких костей можно
рассматривать как разрушения стержня при воздействии нагрузок в продольном или поперечном направлениях.
Продольные нагрузки (сжатие) возникают, например, при падении на кисть вытянутой руки, на руку, согнутую в локтевом суставе или на согнутое колено (рис. 11.11).
В спортивной практике часто имеет место повреждение костей вследствие их изгиба под влиянием внешнего воздействия. Зона начала разрушения диафиза длинной трубчатой кости при изгибе располагается на выпуклой стороне (рис. 11.12.) дуги, где сосредотачиваются наибольшие значения растягивающих напряжений.
Другой вид повреждений больших трубчатых костей, сопровождающийся множественными переломами, возникает при ударе тупым предметом (рис. 11.13).
11.6. Механические свойства биологических тканей
Структура материала является главным фактором, определяющим его механические свойства и характер процесса разрушения. Большинство биологических тканей являются анизотропными композитными материалами, образованными объемным сочетанием химически разнородных компонентов. Состав каждого типа ткани сформировался в процессе эволюции и зависит от функций, которые она выполняет.
Костная ткань
Кость — основной материал опорно-двигательного аппарата. Так, в скелете человека более 200 костей. Скелет является опорой тела и способствует передвижению (отсюда и произошел термин «опорно-двигательный аппарат»). У взрослого человека скелет весит около 12 кг (18% общего веса).
В компактной костной ткани половину объема составляет неорганический материал, минеральное вещество кости — гидрокси-лапатит. Это вещество представлено в форме микроскопических
кристалликов. Другая часть объема состоит из органического материала, главным образом коллагена (высокомолекулярное соединение, волокнистый белок, обладающий большой эластичностью). Способность кости к упругой деформации реализуется за счет минерального вещества, а ползучесть — за счет коллагена.
Кость является армированным композиционным материалом. Например, кости нижних конечностей армированы высокопрочными волокнами в окружных и спиральных перекрещивающихся направлениях.
Механические свойства костной ткани зависят от многих факторов: возраста, заболевания, индивидуальных условий роста. В норме плотность костной ткани 2400 кг/м3. Модуль Юнга Е = 10'°Па, предел прочности при растяжении оп = 100 МПа, относительная деформация достигает 1 %.
При различных способах деформирования (нагружения) кость ведет себя по-разному. Прочность на сжатие выше, чем на растяжение или изгиб. Так, бедренная кость в продольном направлении выдерживает нагрузку 45000 Н, а при изгибе — 2500 Н.
Запас механической прочности кости весьма значителен и заметно превышает нагрузки, с которыми она встречается в обычных жизненных условиях.
Вся архитектоника костной ткани идеально соответствует опорной функции скелета, ориентация костных перекладин параллельна линиям основных напряжений, что позволяет кости выдерживать большие механические нагрузки. Так, например, в головке бедренной кости под каждую нагрузку формируется своя структура — так называемая ферма Мичелла. Все эти фермы связаны между собой и образуют сложную структуру (рис. 11.14).
Одной из важных особенностей конструкции костей скелета является галтельность, т. е. скругление внутренних и внешних углов. Галтельность повышает прочность и снижает внутренние напряжения в местах резкого перехода.
Кости обладают различной прочностью в зависимости от функции, которую выполняют. Бедренная кость в вертикальном положении выдерживает нагрузку до 1,5 т, а большая берцовая кость до 1,8 т (это в 25—30 раз больше веса нормального человека).
Установлено, что в соответствии с выполнением физиологических задач по реализации опорных и локомоторных функций согласно распределению силовых нагрузок в костях формируются зоны разной твердости. На рис. 11.15 приведена схема топографии разнотвердостных зон в одном из поперечных сечений боль-шеберцовой кости.
Кожа
Кожа представляет собой не только совершенный покров тела, но является сложным органом, выполняющим важные функции: поддержание гомеостаза; участие в процессе терморегуляции, регуляция общего обмена веществ в организме, секреторная функция (работа сальных и потовых желез), защита от повреждающего действия механических, физических, химических, инфекционных агентов. Она представляет собой обширное рецепторное поле, воспринимающее извне и передающее в ЦНС целый ряд ощущений. Кожа — граница раздела между телом и окружающей средой, поэтому она обладает значительной механической прочностью.
Кожа — самый крупный орган тела, важная анатомо-физиоло-гическая часть целостного организма. При различных заболеваниях, в том числе и внутренних органов, в коже происходят те или иные изменения.
Кожу часто рассматривают как гетерогенную ткань, состоящую из трех наложенных друг на друга слоев, которые тесно связаны между собой, но четко различаются по природе, структуре, свойствам. Схематическое изображение основных трех слоев — эпидермиса, дермы, подкожной клетчатки представлено на рис. 11.16. Эпидермис покрыт сверху роговым слоем.
Функции каждого слоя, в том числе и механические, отражают биомеханическую природу ее компонентов и их структурную организацию.
Соотношение толщины слоев на различных участках тела различно, что показано для некоторых участков на рис. 11.17.
При исследовании механических свойств кожи с помощью акустического анализатора тканей, позволяющего оценивать скорость распространения акустических возмущений звукового диапазона (5—б кГц) была выявлена акустическая анизотропия кожи. Это проявляется в том, что скорость распространения поверхностной волны (V) во взаимно перпендикулярных направлениях — вдоль вертикальной (У) и горизонтальной (X) осей тела различается.
Проявление акустической анизотропии находится в соответствии с ориентацией линий естественного натяжения кожи, так называемых линий Лангера. Сопоставление ориентации линий Лан-гера и вида акустической анизотропии показано на рис. 11.19.
Степень анизотропии кожи при некоторых патологиях сильно возрастает. Например, при псориазе, при атопических дерматитах (особенно в областях сгибательных поверхностей) или на коже верхнего века при прогрессирующей близорукости.
На некоторых участках кожи проявляется асимметрия. Так, коэффициенты акустической анизотропии на коже голени различны для левой и правой ноги.
Существуют некоторые различия механических свойств кожи в зависимости от пола.
Сжимаемость кожной складки у девушек в области ягодиц больше, чем у юношей. В области задней поверхности шеи, на бедре, бицепсах, в надколенной и икроножной области наоборот, меньше у девушек, чем у юношей.
У женщин степень растяжимости кожи выше, а эластичность меньше по сравнению с мужчинами.
На тепловые раздражители реакции кожи (развитие терморе-гуляторных реакций) у мужчин и женщин одинаковы. Холодовые реакции существенно различаются у мужчин и женщин. Причем зимой толерантность к холодовому воздействию существенно выше у женщин. Летом различия менее выражены.
Механические свойства кожи зависят от содержания в ней влаги. Влажность окружающей среды существенно влияет на эластичность кожи. Все указанные особенности кожи необходимо учитывать при проведении реабилитационных мероприятий, в частности, при проведении массажа.